DISTRIBUTED GENERATION IN LIBERALISED ELECTRICITY MARKETS ## TABLE OF CONTENTS | EXECU | TIVE SUMMARY | 7 | |----------|---|------------------| | INTRO | DUCTION | 19 | | 2 DISTRI | BUTED-GENERATION TECHNOLOGIES | 25 | | 3 ECONO | MICS OF DISTRIBUTED GENERATION | 33 | | | BUTED GENERATION IN JAPAN,
5, THE NETHERLANDS, AND THE UK | 53 | | 5 POLICY | (ISSUES | 72 | | 6 FUTUR | E OF DISTRIBUTED GENERATION | 97 | | 7 CONCL | LUSIONS AND RECOMMENDATIONS | 101 | | ANNEX | | 109 | | | aring Energy Consumption and Emissions from and Conventional Heat and Power Generation | 109 | | LIST OF | TABLES | | | 2. (| Distributed-Generation Technology Data
Costs of Various Distributed-Generation Technologie
Capital Costs and Efficiencies of CHP Technologies | 26
s 37
42 | | | 4. European Union CHP 1998 | 44 | |------------------|---|----------------------| | ; | 5. Cost of a One-Hour Power Outage for Different US Businesses | 49 | | • | 5. Economics of Gas CHP in Japan | 54 | | ; | Cogeneration System Capacity (in MW) by Sector
and Generator Type | 55 | | 8 | Comparison of Distributed-Generation Issues
in Japan, the US, the Netherlands, and the UK | 71 | | ç | P. Estimates of "Embedded Benefit" to UK Distributed Generators (USD per MWh) | 79 | | 10 |). New South Wales (Australia) Distribution Loss
Factors | 85 | | 11 | . Japanese NOx Limits on Cogeneration Systems | 89 | | | Examples of NOx Limits in the US Applicable to | 07 | | | Distributed Generation (in kg/MWh) | 90 | | | - | | | IST (| OF FIGURES | | | | OF FIGURES . Distributed Generation in an Electricity Network | 21 | | 1 | | 21 | | 1
2 | . Distributed Generation in an Electricity Network . Orders for Engines and Turbines, 1-30 MW, for | | | 1
2
3 | Distributed Generation in an Electricity Network Orders for Engines and Turbines, 1-30 MW, for Peaking or Continuous Use, 1998/99 – 2000/01 Ratio of Industrial Fuel to Electricity Prices | 31 | | 1
2
3 | Distributed Generation in an Electricity Network Orders for Engines and Turbines, 1-30 MW, for Peaking or Continuous Use, 1998/99 – 2000/01 Ratio of Industrial Fuel to Electricity Prices in Selected Countries Ratio of Household Fuel to Electricity Prices in Selected Countries Comparison of PV Costs/Output to Household | 31
34 | | 1
2
3
4 | Distributed Generation in an Electricity Network Orders for Engines and Turbines, 1-30 MW, for Peaking or Continuous Use, 1998/99 – 2000/01 Ratio of Industrial Fuel to Electricity Prices in Selected Countries Ratio of Household Fuel to Electricity Prices in Selected Countries Comparison of PV Costs/Output to Household Electricity Rates in Selected OECD Countries NOx Emissions from Distributed-Generation | 31
34
35
38 | | 3
3
4
5 | Distributed Generation in an Electricity Network Orders for Engines and Turbines, 1-30 MW, for Peaking or Continuous Use, 1998/99 – 2000/01 Ratio of Industrial Fuel to Electricity Prices in Selected Countries Ratio of Household Fuel to Electricity Prices in Selected Countries Comparison of PV Costs/Output to Household Electricity Rates in Selected OECD Countries | 31
34
35 |