SPATIAL TECHNOLOGY AND ARCHAEOLOGY

The archaeological applications of GIS

David Wheatley and Mark Gillings

Contents

LIST OF	FIGURES	x i
LIST O	TABLES	xiv
PREFA	CE	xv
ACKNO	OWLEDGEMENTS	xvii
1. ARC 1.1 1.2 1.3 1.4	CHAEOLOGY, SPACE AND GIS Spatial information and archaeology Thinking about space Neutral space and quantification Meaningful spaces	1 3 4 6 8
1.5 1.6 1.7 1.8 1.9	What is a GIS? An anatomy lesson Where did GIS come from? What does it do that makes it so attractive to archaeologists? The development of GIS applications in archaeology Conclusion	9 10 13 16 18 20
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	SPATIAL DATABASE How does a spatial database differ from a traditional database? Thematic mapping and georeferencing Projection systems Further complications Spatial data models and data structures Vector data structures An example of a 'Simple' vector structure Raster data layers Which is best—vector or raster? A note on thematic mapping Conclusion Further information	23 23 25 28 31 32 34 36 50 56 57 57
3. ACC 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Sources of attribute data	59 59 60 60 62 69 71

		Integrating spatial information—existing digital resources Integrating attribute data Data quality	81 82 83
		Metadata and interoperability Conclusion	86 87
4.	MANIPULATING SPATIAL DATA		
	4.1 4.2 4.3	This is where the fun starts Searching the spatial database Summaries	89 90 94
	4.4 4.5	Simple transformations of a single data theme Spatial data modelling	98 104
5.	DIG	ITAL ELEVATION MODELS	107
	5.1 5.2 5.3	Uses of elevation models Elevation data in maps Storing elevation data in GIS	107 108 110
	5.4	Creating elevation models	113
	5.5	Products of elevation models	120
	5.6 5.7	Visualisation Summary	123 123
6.	BEG	INNING TO QUANTIFY SPATIAL PATTERNS	12:
	6.1 6.2 6.3 6.4 6.5	What is spatial analysis? Identifying structure when we only have points Spatial structure among points that have values Spatial structure in area and continuous data Structure in lines and networks	126 127 131 132 134
	6.6 6.7 6.8 6.9 6.10	Comparing points with spatial variables: one- and two-sample tests Relationships between different kinds of spatial observations Exploratory Data Analysis And there is more Spatial analysis?	136 139 142 146 146
7.	SITE	S, TERRITORIES AND DISTANCE	141
	7.1 7.2 7.3 7.4 7.5	Buffers, corridors and proximity surfaces Voronoi tessellation and Delaunay triangulation Cost and time surfaces Site catchment analysis and GIS Conclusion	148 149 151 159 162
8.	LOC	ATION MODELS AND PREDICTION	16:
	8.1 8.2 8.3	Deductive and inductive approaches Inputs and outputs Rule-based approaches	166 166 169
	8.4	Regression-based approaches	171
	8.5 8.6	An example: predictive modelling in action Methodological issues in predictive modelling	176 178

Contents		

	8.7 8.8	The prediction predicament: theoretical differences of opinion Conclusions	179 180	
9.	TREND SURFACE AND INTERPOLATION			
	9.1	Characteristics of interpolators	184	
	9.2	Point data	185	
	9.3	Trend surface analysis	187	
	9.4	Approaches that use triangulation	190	
	9.5	Approaches that use splines	192	
	9.6	Numerical approximation	193	
	9.7	Geostatistics and Kriging	195	
	9.8	Summary	199	
10). VISI	BILITY ANALYSIS AND ARCHAEOLOGY	201	
	10.1	The importance of visibility in archaeological analysis	201	
	10.2	Archaeological approaches to visibility	202	
	10.3	How does the GIS calculate visibility?	204	
	10.4	Visibility within samples of sites—the cumulative viewshed	206	
	10.5	Visibility of groups of sites—multiple and cumulative viewsheds	207	
	10.6	Problems with viewshed analysis	209	
	10.7	Intervisibility and reciprocity	210	
		How archaeologists have applied visibility analyses	212	
	10.9	Critiques and developments	214	
11	ı. CUL	TURAL RESOURCE MANAGEMENT	217	
	11.1	The importance of spatial technology for heritage management	217	
	11.2	Archaeological resource as continuous variation	219	
		Reality: the antidote to GIS	221	
		Seeing the wood for the trees: Dolmen database and GIS	224	
		Regional heritage management: Hampshire County Council	227	
		National and supra-national contexts	230	
	11.7	Conclusions: recommendations for the adoption of GIS	231	
12		URE DIRECTIONS	233	
		The current state of GIS applications within archaeology	233	
		The developing shape of GIS applications within archaeology	237	
		Technological development of GIS	238	
		Object-Oriented GIS (OO-GIS)	238	
		Multi-dimensional GIS (3D-GIS)	241	
		Temporal GIS (TGIS)	242	
		Technological convergence and field archaeology	243	
	12.8	Building a research community	245	
REFERENCES				
Ω	INDEX			