
## Analysis and Design of Low-Voltage Power Systems



CD-ROM included

## Contents

| Foreword        | XIII                                                                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbols         | XV                                                                                                                                                   |
| Abbreviat       | tions XXI                                                                                                                                            |
| 1               | Introduction 1                                                                                                                                       |
| <b>2</b><br>2.1 | Planning and Project Management 3 Guidelines for the Remuneration of Architects and Engineers and Regulations for Contracting System Installations 3 |
| 2.2             | Guidelines for Project Planning of Electrical Systems 4                                                                                              |
| 3               | Electrical Systems 7                                                                                                                                 |
| 3.1<br>3.2      | Medium-Voltage Systems 7 Low-Voltage Systems 9                                                                                                       |
| 3.2             | Low-voltage Systems 9                                                                                                                                |
| 4               | Transformers 15                                                                                                                                      |
| 4.1             | Physical Basis 15                                                                                                                                    |
| 4.2             | Cores 20                                                                                                                                             |
| 4.3             | Windings 21                                                                                                                                          |
| 4.4             | Types 21                                                                                                                                             |
| 4.5             | A.C. Transformers 21                                                                                                                                 |
| 4.5.1           | Design 21                                                                                                                                            |
| 4.5.2           | Principle of Operation 22                                                                                                                            |
| 4.5.3           | No-Load Voltage 23                                                                                                                                   |
| 4.5.4           | Voltage and Current Transformation 23                                                                                                                |
| 4.5.5           | Transformer Loading 24                                                                                                                               |
| 4.6             | Three-Phase Transformers 26                                                                                                                          |
| 4.6.1           | Design 26                                                                                                                                            |
| 4.6.2           | Winding Connections 27                                                                                                                               |
| 4.6.3           | Connection Symbols 28                                                                                                                                |
| 4.6.4           | Parallel Connection of Transformers 29                                                                                                               |

Analysis and Design of Low-Voltage Power Systems. Ismail Kasikci Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30483-5

| ۷١ | Contents |                                                                         |
|----|----------|-------------------------------------------------------------------------|
| '  | 4.7      | Special-Purpose Transformers 30                                         |
|    | 4.7.1    | Current Transformers 30                                                 |
|    | 4.7.2    | Voltage Transformers 31                                                 |
|    | 4.7.3    | Autotransformers 32                                                     |
|    | 4.8      | Efficiency of Transformers 33                                           |
|    | 4.9      | Protection of Transformers 33                                           |
|    | 4.10     | Selection of Transformers 34                                            |
|    | 4.11     | Rules of Thumb for Calculating Short Circuit Currents on the            |
|    |          | Low-Voltage Side 39                                                     |
|    | 4.12     | Examples for Transformers 40                                            |
|    | 4.12.1   | Example 1: Calculation of the Initial Symmetrical Short Circuit Current |
|    |          | for a Transformer 40                                                    |
|    | 4.12.2   | Example 2: Calculation of Equalizing Currents 41                        |
|    | 4.12.3   | Example 3: Economic Efficiency of Transformers 41                       |
|    | 4.12.4   | Example 4: Calculation of Efficiency Over a Year 42                     |
|    | 4,12.5   | Example 5: Calculation of Efficiency 43                                 |
|    |          | •                                                                       |
|    | 5        | Asynchronous Motors (ASM) 45                                            |
|    | 5.1      | Designs and Types 45                                                    |
|    | 5.1.1    | Principle of Operation (No-Load) 46                                     |
|    | 5.1.2    | Typical Speed-Torque Characteristics 47                                 |
|    | 5.2      | Properties Characterizing Asynchronous Motors 48                        |
|    | 5.2.1    | Rotor Frequency 48                                                      |
|    | 5.2.2    | Torque 49                                                               |
|    | 5.2.3    | Slip 49                                                                 |
|    | 5.2.4    | Gear System 50                                                          |
|    | 5.3      | Startup of Asynchronous Motors 51                                       |
|    | 5.3.1    | Direct Switch-On 51                                                     |
|    | 5.3.2    | Star Delta Startup 53                                                   |
|    | 5.4      | Speed Adjustment 57                                                     |
|    | 5.4.1    | Speed Control by the Slip 57                                            |
|    | 5.4.2    | Speed Control by Frequency 57                                           |
|    | 5.4.3    | Speed Control by Pole Changing 58                                       |
|    | 5.4.4    | Soft Starters 62                                                        |
|    | 5.4.5    | Motor Operating Modes 62                                                |
|    | 5.5      | Project Planning of Drives 72                                           |
|    | 5.5.1    | Example 1: Calculation With SIKOSTART 72                                |
|    | 5.5.2    | Example 2: Calculation of Overload and Starting Conditions 75           |
|    | 5.5.3    | Example 3: Calculation of Motor Data 76                                 |
|    | 5.5.4    | Example 4: Calculation of the Belt Pulley Diameter and Motor Power 76   |
|    | 5.5.5    | Example 5: Dimensioning of a Motor 77                                   |
|    | 6        | Emergency Generators 81                                                 |
|    | 6.1      | Generator-Specific Limiting Operational Values 83                       |
|    |          |                                                                         |

| 6.2    | Planning a Standby Generator 84                          |
|--------|----------------------------------------------------------|
| 6.3    | Example: Calculation of Standby Generator Power 85       |
| 7      | Equipment for Overcurrent Protection 87                  |
| 7.1    | Electric Arc 87                                          |
| 7.1.1  | Electric Arc Characteristic 88                           |
| 7.1.2  | DC Cut-Off 89                                            |
| 7.1.3  | AC Cut-Off 90                                            |
| 7.1.4  | Transient Voltage 92                                     |
| 7.2    | Low-Voltage Switchgear 93                                |
| 7.2.1  | Characteristic Parameters 94                             |
| 7.2.2  | Main or Load Switches 94                                 |
| 7.2.3  | Motor Protective Switches 95                             |
| 7.2.4  | Contactors and Motor Starters 96                         |
| 7.2.5  | Circuit Breakers 97                                      |
| 7.2.6  | RCDs (Residual Current Protective Devices) 98            |
| 7.2.7  | Main Protective Equipment 101                            |
| 7.2.8  | Meter mounting boards with main protective switch 105    |
| 7.2.9  | Fuses 107                                                |
| 7.2.10 | Power Circuit Breakers 112                               |
| 7.2.11 | Load Interrupter Switches 116                            |
| 7.2.12 | Disconnect Switches 116                                  |
| 7.2.13 | Fuse Links 116                                           |
| 7.2.14 | List of Components 118                                   |
| 8      | Selectivity and Backup Protection 119                    |
| 8.1    | Selectivity 119                                          |
| 8.2    | Backup Protection 128                                    |
|        | *                                                        |
| 9      | Switchgear Combinations 131                              |
| 9.1    | Type-Tested Switchgear Combinations (TSC) 131            |
| 9.2    | Partially Type-Tested Switchgear Combinations (PTSC) 132 |
| 9.3    | Proof of Short Circuit Strength 132                      |
| 9.4    | Proof of Compliance With Upper Temperature Limits in     |
|        | Partially Type-Tested Switchgear Combinations 133        |
| 9.5    | Differentiation of Power Losses 134                      |
| 9.6    | Checklist 135                                            |
| 9.7    | Notes on Project Planning 136                            |
| 9.8    | Example: Computer Evaluation of Temperature Rise 136     |
| 10     | Protection Against Electric Shock 145                    |
| 10.1   | Voltage Ranges 145                                       |
| 10.2   | Protection by Cut-Off or Warning Messages 146            |
| 10.2.1 | TN-Systems 146                                           |
| 10.2.2 | TT-Systems 148                                           |

| viii | Contents |                                                                          |
|------|----------|--------------------------------------------------------------------------|
| '    | 10.2.3   | IT Systems 151                                                           |
|      | 10.2.4   | Summary of cut-off times and loop resistances 154                        |
|      | 10.2.5   | Example 1: Checking Protective Measures 155                              |
|      | 10.2.6   | Example 2: Determination of Rated Fuse Current 156                       |
|      | 10.2.7   | Example 3: Calculation of Maximum Conductor Length 156                   |
|      | 10.2.8   | Example 4: Rated current for a TT System 156                             |
|      | 10.2.9   | Example 5: Cut-Off Condition for an IT System 157                        |
|      | 10.2.10  | Example 6: Protective Measure for Connection Line to a House 157         |
|      | 10.2.11  | Example 7: Protective Measure for a TT System 159                        |
|      | 11       | Current Carrying Capacity of Conductors and Cables 161                   |
|      | 11.1     | Terms and Definitions 161                                                |
|      | 11.2     | Overload Protection 162                                                  |
|      | 11.3     | Short Circuit Protection 163                                             |
|      | 11.3.1   | Designation of Conductors 167                                            |
|      | 11.3.2   | Designation of Cables 168                                                |
|      | 11.4     | Current Carrying Capacity 169                                            |
|      | 11.4.1   | Loading Capacity Under Normal Operating Conditions 169                   |
|      | 11.4.2   | Loading Capacity Under Fault Conditions 170                              |
|      | 11.4.3   | Installation Types and Load Values for Lines and Cables 176              |
|      | 11.4.4   | Current Carrying Capacity of Heavy Current Cables and Correction Factors |
|      |          | for Underground and Overhead Installation 184                            |
|      | 11.5     | Examples of Current Carrying Capacity 195                                |
|      | 11.5.1   | Example 1: Checking Current Carrying Capacity 195                        |
|      | 11.5.2   | Example 2: Checking Current Carrying Capacity 196                        |
|      | 11.5.3   | Example 3: Protection of Cables in Parallel 197                          |
|      | 11.5.4   | Example 4: Connection of a Three-Phase Cable 198                         |
|      | 11.5.5   | Example 5: Apartment Building Without Electrical Water Heating 198       |
|      | 11.6     | Examples for the Calculation of Overcurrents 203                         |
|      | 11.6.1   | Example 1: Determination of Overcurrents and Short Circuit Currents 203  |
|      | 11.6.2   | Example 2: Overload Protection 205                                       |
|      | 11.6.3   | Example 3: Short Circuit Strength of a Conductor 206                     |
|      | 11.6.4   | Example 4: Checking Protective Measures for Circuit Breakers 208         |
|      | 12       | Calculation of Short Circuit Currents in Three-Phase Networks 213        |
|      | 12.1     | The Equivalent Voltage Source Method 216                                 |
|      | 12.1.1   | Single-Pole Short Circuits to Ground 217                                 |
|      | 12.1.2   | Calculation of Loop Impedance 218                                        |
|      | 12.1.3   | Three-Pole Short Circuits 219                                            |
|      | 12.2     | Calculation of Resistance Values for Operational Equipment 220           |

Network Feeders 220

Synchronous Machines 221

Consideration of Motors 222

Overland Lines, Cables and Lines 224

12.2.1

12.2.2 12.2.3

12.2.4

| 12.2.5 | Transformers 225                                                          |
|--------|---------------------------------------------------------------------------|
| 12.2.6 | Impedance Corrections 226                                                 |
| 12.3   | Short Circuit Currents for Three-Pole Short Circuits 228                  |
| 12.3.1 | Peak Short Circuit Current 228                                            |
| 12.3.2 | Symmetrical Breaking Current 229                                          |
| 12.3.3 | Steady State Short Circuit Current 231                                    |
| 12.4   | Thermal and Dynamic Short Circuit Strength 232                            |
| 12.5   | Examples for the Calculation of Short Circuit Currents 233                |
| 12.5.1 | Example 1: Calculation of the Short Circuit Current in a DC System 233    |
| 12.5.2 | Example 2: Calculation of Short Circuit Currents in a Building Electrical |
|        | System 234                                                                |
| 12.5.3 | Example 3: Dimensioning of an Exit Cable 236                              |
| 12.5.4 | Example 4: Calculation of Short Circuit Currents with Zero-Sequence       |
|        | Resistances 237                                                           |
| 12.5.5 | Example 5: Complex Calculation of Short Circuit Currents 239              |
| 12.5.6 | Example 6: Calculation With Effective Power and Reactive Power 242        |
| 12.5.7 | Example 7: Complete Calculation for a System 248                          |
| 12.5.8 | Example 8: Calculation of Short Circuit Currents With Impedance           |
|        | Corrections 259                                                           |
| 13     | Voltage Drop Calculations 263                                             |
| 13.1   | Voltage Regulation 263                                                    |
| 13.1.1 | Permissible Voltage Drop in Accordance With the Technical Conditions      |
|        | for Connection 264                                                        |
| 13.1.2 | Permissible Voltage Drop in Accordance With Electrical Installations in   |
|        | Buildings 264                                                             |
| 13.1.3 | Voltage Drops in Load Systems 264                                         |
| 13.1.4 | Voltage Drops in Accordance With IEC 60 364 265                           |
| 13.1.5 | Parameters for the Maximum Line Length 266                                |
| 13.1.6 | Summary of Characteristic Parameters 268                                  |
| 13.1.7 | Lengths of Conductors With a Source Impedance 269                         |
| 13.2   | Examples for the Calculation of Voltage Drops 271                         |
| 13.2.1 | Example 1: Calculation of Voltage Drop for a DC System 271                |
| 13.2.2 | Example 2: Calculation of Voltage Drop for an AC System 272               |
| 13.2.3 | Voltage Drop for a Three-Phase System 272                                 |
| 13.2.4 | Example 4: Calculation of Voltage Drop for a Distributor 274              |
| 13.2.5 | Calculation of Cross-Section According to Voltage Drop 275                |
| 13.2.6 | Example 6: Calculation of Voltage Drop for an industrial plant 276        |
| 13.2.7 | Example 7: Calculation of voltage drop for an electrical outlet 276       |
| 13.2.8 | Example 8: Calculation of Voltage Drop for a Hot Water Storage Unit 276   |
| 13.2.9 | Example 9: Calculation of Voltage Drop for a Pump Facility 277            |
| 14     | Lighting Systems 279                                                      |
| 14.1   | Interior Lighting 279                                                     |
| 14.7   | Types of Lighting 280                                                     |

| x | Contents |                                                           |
|---|----------|-----------------------------------------------------------|
| , | 14.2.1   | Normal Lighting 280                                       |
|   | 14.2.2   | Normal Workplace-Oriented Lighting 281                    |
|   | 14.2.3   | Localized Lighting 281                                    |
|   | 14.2.4   | Technical Requirements for Lighting 281                   |
|   | 14.2.5   | Selection and Installation of Operational Equipment 282   |
|   | 14.2.6   | Lighting Circuits for Special Rooms and Systems 282       |
|   | 14.3     | Lighting Calculations 284                                 |
|   | 14.4     | Planning of Lighting with Data Blocks 285                 |
|   | 14.4.1   | System Power 285                                          |
|   | 14.4.2   | Distribution of Luminous Intensity 286                    |
|   | 14.4.3   | Luminous Flux Distribution 286                            |
|   | 14.4.4   | Efficiencies 287                                          |
|   | 14.4.5   | Spacing Between Lighting Elements 287                     |
|   | 14.4.6   | Number of fluorescent lamps in a Room 288                 |
|   | 14.4.7   | Illuminance Distribution Curves 289                       |
|   | 14.4.8   | Maximum Number of Fluorescent Lamps on Switches 289       |
|   | 14.4.9   | Maximum Number of Discharge Lamps Per Circuit Breaker 290 |
|   | 14.4.10  | Mark of Origin 290                                        |
|   | 14.4.11  | Standard Values for Planning Lighting Systems 291         |
|   | 14.4.12  | Economic Analysis and Costs of Lighting 291               |
|   | 14.5     | Procedure for Project Planning 292                        |
|   | 14.6     | Exterior Lighting 296                                     |
|   | 14.7     | Low-Voltage Halogen Lamps 296                             |
|   | 14.8     | Safety and Standby Lighting 298                           |
|   | 14.8.1   | Terms and Definitions 298                                 |
|   | 14.8.2   | Circuits 298                                              |
|   | 14.8.3   | Structural Types for Groups of People 299                 |
|   | 14.8.4   | Planning and Configuring of Emergency-Symbol and Safety   |
|   |          | Lighting 299                                              |
|   | 14.8.5   | Power Supply 303                                          |
|   | 14.8.6   | Notes on Installation 303                                 |
|   | 14.8.7   | Testing During Operation 304                              |
|   | 14.9     | Battery Systems 304                                       |
|   | 14.9.1   | Central Battery Systems 304                               |
|   | 14.9.2   | Grouped Battery Systems 310                               |
|   | 14.9.3   | Single Battery Systems 311                                |
|   | 14.9.4   | Example: Dimensioning of Safety and Standby Lighting 315  |
|   | 15       | Compensation for Reactive Power 317                       |
|   | 15.1     | Terms and Definitions 317                                 |
|   | 15.2     | Effect of Reactive Power 321                              |
|   | 15.3     | Compensation for Transformers 321                         |
|   | 15.4     | Compensation for Asynchronous Motors 322                  |
|   | 15.5     | Compensation for Discharge Lamps 322                      |
|   | 15.6     | c/k Value 323                                             |

| 167     | Resonant Circuits 323                                               |
|---------|---------------------------------------------------------------------|
| 15.7    | Harmonics and Voltage Quality 325                                   |
| 15.8    | Compensation With Non-Choked Capacitors 326                         |
| 15.8.1  | Inductor-Capacitor Units 328                                        |
| 15.8.2  | Series Resonant Filter Circuits 329                                 |
| 15.8.3  | Static Compensation for Reactive Power 330                          |
| 15.9    | Examples of Compensation for Reactive Power 333                     |
| 15.10   |                                                                     |
| 15.10.1 | Example 1: Determination of Capacitive Power 333                    |
| 15.10.2 | Example 2: Capacitive Power With k Factor 334                       |
| 15.10.3 | Example 3: Determination of Cable Cross-Section 334                 |
| 15.10.4 | Example 4: Calculation of the $c/k$ Value 335                       |
| 16      | Lightning Protection Systems 337                                    |
| 16.1    | Lightning Protection Class 339                                      |
| 16.2    | Exterior Lightning Protection 340                                   |
| 16.2.1  | Air Terminal 340                                                    |
| 16.2.2  | Down Conductors 344                                                 |
| 16.2.3  | Grounding Systems 347                                               |
| 16.2.4  | Example 1: Calculation of Grounding Resistances 354                 |
| 16.2.5  | Example 2: Minimum Lengths of Grounding Electrodes 354              |
| 16.2.6  | Exposure Distances in the Wall Area 355                             |
| 16.2.7  | Grounding of Antenna Systems 357                                    |
| 16.2.8  | Examples of Installations 358                                       |
| 16.3    | Interior Lightning Protection 359                                   |
| 16.3.1  | The EMC Lightning Protection Zone Concept 360                       |
| 16.3.2  | Planning Data for Lightning Protection Systems 362                  |
| 17      | Using the CD-ROM 367                                                |
| 17.1    | Use of CAD Systems 367                                              |
| 17.1.1  | SIKOSTART: Dimensioning and Calculation of Startup Time for a       |
| 2,12,2  | Motor 367                                                           |
| 17.1.2  | TXI: Calculations for Lighting Systems 370                          |
| 17.1.3  | TRABTECH-Select: Planning Software for Overvoltage Protection Con-  |
| 1,,110  | cepts 371                                                           |
| 17.1.4  | MODLCON (MODL Power Conditioning): Calculation of Compensating      |
| _,      | Systems for Reactive Currents 372                                   |
| 17.1.5  | KUBS plus: Short Circuit Calculations 372                           |
| 17.1.6  | NEPLAN: Planning and information system for electrical networks 375 |
| 17.2    | Aids for Installation 379                                           |
|         |                                                                     |