Molecular Plant Pathology

M. Dickinson

ADVANCED TEXT

Contents

Abbreviations

1	The	fundamentals of plant pathology	1
	1.1	The concept of plant disease	1
	1.2	The causal agents	1
		1.2.1 Fungi	1
		1.2.2 The Oomycota	2
		1.2.3 Protozoa	2 2
		1.2.4 Bacteria	4
		1.2.5 Phytoplasmas and Spiroplasmas	5
		1.2.6 Viruses	6
		1.2.7 Other agents of plant disease	6
	1.3		9
		1.3.1 Historically important diseases	9
		1.3.2 Emerging diseases	10
	1.4	The control of plant diseases	11
	1.5	Molecular biology in plant pathology	12
		1.5.1 A historical perspective	12
		1.5.2 The use of model organisms	12
		1.5.3 Transformation techniques	14
		1.5.4 Forward genetics	14
		1.5.5 Reverse genetics	21
		1.5.6 Dissection of signalling pathways	21
		1.5.7 Gene expression profiling	23
		1.5.8 Proteomics	25
		1.5.9 Metabolite profiling	26
		1.5.10 Bioinformatics	26
2		igal and oomycete diseases – establishing infection	29
		Dispersal of spores	29
		Finding a suitable host	29
	2.3	Spore attachment to the plant	30
		The germination process	31
		Penetration methods	33
		Germ-tube elongation	34
	2.7	Induction of appressorial development	35
		2.7.1 Physical factors	35
		2.7.2 Chemical factors	37
	2.8	Appressorial development	38
		2.8.1 Morphology	38
		2.8.2 Hydrophobins	40
		2.8.3 Melanisation	40
		2.8.4 Turgor pressure	42
	2.9	Cell-wall degrading enzymes (CWDEs)	42

Х

3	Fun	gal and oomycete diseases – development of disease	47	
_	3.1	The basic concepts – necrotrophy versus biotrophy	47	
	3.2	Host barriers	48	
	3.3	Overcoming host barriers	48	
		3.3.1 Quiescence	48	
		3.3.2 Detoxification of phytoanticipins	48	
		3.3.3 Detoxification of phytoalexins	49	
		3.3.4 ATP-binding cassette (ABC) transporters	50	
		3.3.5 Suppression of active oxygen species	51	
		3.3.6 Avoidance of recognition	51	
	3.4	Establishing infection	52	
		Cell-wall-degrading enzymes	52	
	3.6		53	
		3.6.1 Host-selective toxins	53	
		3.6.2 Host non-selective toxins	5	
		3.6.3 Mycotoxins	53	
	3.7	Biotrophy	60	
		3.7.1 Haustorial structure	6	
		3.7.2 Haustorial function	6	
	3.8	Prevention of leaf senescence	6.	
		3.8.1 The role of cytokinins	63	
		3.8.2 The role of polyamines	6	
4	Fungal and oomycete genetics			
	4.1	The concept of race structure	6	
	4.2	Avirulence genes	6	
		4.2.1 General concepts	6	
		4.2.2 Cloning of avirulence genes	6	
		4.2.3 Avr protein structure and function	6	
		4.2.4 The significance of avirulence genes in species specificity	71	
	4.3	Fungicide resistance	7	
	4.4	Mechanisms for generating genetic variation in fungi	7.	
	4.5	Mating-type genes	7	
	4.6	Chromosome instability	7	
	4.7	Alien genes/horizontal gene transfer	7	
	4.8		7	
	4.9	Role of heterokaryosis	7	
	4.10	Role of mitochondrial DNA	8	
	4.1	1 Role of mycoviruses	8	
5	Bacterial diseases - establishing infection			
	5.1	Bacterial-bacterial communication - quorum sensing	8	
	5.2	Plant penetration	8	
		5.2.1 Foliar bacteria	8	
		5.2.2 Soil-borne bacteria	8	
	5.3		8	
	5.4	Stimulation of gene expression in response to host factors	8	
	5.5	The role of cell-wall-degrading enzymes (CWDEs)	9	
	5.6	The role of toxins	9	
	5.7	The role of hormones	9	
	5.8	The role of extracellular polysaccharides (EPSs)	9	

147

•	Bacterial diseases - determinants of nost specificity	103
	6.1 The cloning of avirulence genes	103
	6.2 The products of avirulence genes	103
	6.3 Type III secretion mechanisms	105
	6.4 Type III secretion in plant pathogens	105
	6.5 Hrp-pili	107
	6.6 Regulation of hrp genes	108
	6.7 Secreted proteins	110
	6.8 Secretion signals	111
	6.9 Pathogenicity islands	111
	6.10 The role of plasmids	112
7		113
	7.1 The structure of plant viruses	113
	7.2 Virus infection of plants	114
	7.3 Translation and replication of positive-strand RNA virus	
	7.3.1 The production of sub-genomic RNAs and virus replications	
	7.3.2 Segmented genomes	118
	7.3.3 Polyprotein processing	118
	7.3.4 Readthrough and frameshifting	119
	7.4 Negative-strand RNA viruses	120
	7.5 Double-strand RNA viruses	121
	7.6 Single-strand DNA viruses	122
	7.7 Double-strand DNA viruses	123
	7.8 Viroids	125
	7.9 Other sub-viral entities	126
	7.10 Viral assembly	127
	7.10.1 Assembly of rod-shaped viruses	127
	7.10.2 Assembly of isometric particles	128
	7.10.3 Assembly of membrane-bound particles	129
8	Plant viruses - movement and interactions with plan	nts 131
	8.1 Transmission of viruses	131
	8.2 Transmission by insect vectors	131
	8.3 Transmission by nematodes	134
	8.4 Transmission by zoosporic 'fungi'	134
	8.5 Seed and pollen transmission	134
	8.6 Short-distance movement of viruses in plants	135
	8.7 Long-distance movement in plants	137
	8.8 Viral affects on plants	138
	8.8.1 Alterations in host gene expression	138
	8.8.2 Alterations in host cell metabolism	139
	8.8.3 Suppression of defence responses	139
	8.9 Gene-for-gene interactions with plant viruses	142
	8.10 Genomic variation in plant viruses	142
9	Resistance mechanisms in plants	149
_	9.1 Classical concepts of resistance	14:
	9.2 Preformed defences	140
	9.2.1 Structural barriers	140
	9.2.2 Root border cells	14

9.2.3 Phytoanticipins

	9.3	Induced defences	148
		9.3.1 Local signals	148
		9.3.2 Programmed cell death (PCD)	148
		9.3.3 Induced structural barriers	148
		9.3.4 Phytoalexins	149
		9.3.5 Pathogenesis-related proteins	152
		9.3.6 Other defence-related proteins	154
		9.3.7 Post-transcriptional gene silencing (PTGS)	154
	9.4	Systemic resistance mechanisms	155
	9.5	'Communal' resistance	156
10	Resis	stance genes	159
	10.1	Gene-for-gene resistance	159
	10.2	Features of cloned resistance genes	161
	10.3	R gene specificity	164
		10.3.1 Leucine-rich repeats (LRRs)	164
		10.3.2 Cellular location of recognition	165
		10.3.3 Does the R gene interact directly with the pathogen elicitor?	166
	10:4	The TIR domain	167
	10.5	The NBS (NB) domain	167
	10.6	Other R gene domains	167
		10.6.1 Protein kinases	167
		10.6.2 Coiled coil (leucine zipper) domains	168
	10.7	Genetic organisation of resistance genes	168
		Mechanisms for generating new R gene specificities	169
	10.9	· · · · · · · · · · · · · · · · · · ·	171
		Recessive resistance genes	171
	10.11	Quantitative resistance	172
11		alling in plant disease resistance mechanisms	175
	11.1	Genetic analyses	176
	11.2	MAP kinases (MAPK)	177
	11.3		179
	11.4		181
		Nitric oxide (NO)	184
	11.6		186
		Low-molecular-weight signalling molecules	186
		RNA as a signal	189
	11.9	Co-ordination of cell death responses	189
	11.10	Interplay of downstream signalling pathways	191
		11.10.1 The EDS1 and NDR1 pathways	191
		11.10.2 The role of NPR1	193
		11.10.3 Pathways that are independent of NPR1	193
12		cular diagnostics	197
	12.1		197
	12.2	The use of antibodies	198
		12.2.1 Polyclonal antibodies (Pabs)	198
		12.2.2 Monoclonal antibodies (Mabs)	199
		12.2.3 Recombinant DNA techniques	200
	12.3	Serological tests	201
		12.3.1 ELISA (enzyme-linked immunosorbent assay)	201
		12.3.2 Lateral flow techniques	201

233

	12.3.3 Other uses of antibodies	202
12.4	Nucleic acid-based techniques	203
	12.4.1 Identification of pathogen-specific markers	203
	12.4.2 Hybridisation techniques	204
	12.4.3 PCR-based techniques	204
	12.4.4 Gene-array-based techniques	206
	12.4.5 Quantitative PCR	20€
12.5	Phylogenetic analysis	207
Appl	ication of molecular biology to conventional	
disea	se control strategies	209
13.1	Breeding for resistance	209
	13.1.1 The basis of resistance breeding programmes	209
	13.1.2 The conventional breeding strategy	210
13.2	The use of tissue culture in plant breeding	211
13.3	Marker-assisted breeding	211
13.4	The identification of novel resistance gene specificities	213
13.5	The use of chemicals for disease control	214
13.6	The use of molecular biology in agrochemical production	215
13.7	Engineering chemicals that elicit defence responses in plants	216
Tran	sgenic approaches for crop protection	219
14.1	Pathogen-derived resistance	219
	14.1.1 Coat-protein-mediated resistance	219
	14.1.2 Replicase-mediated resistance	220
	14.1.3 Movement protein-mediated resistance	220
	14.1.4 RNA-mediated resistance	221
	14.1.5 Pathogen-derived resistance against bacterial and fungal diseases	221
14.2	Plantibodies	222
14.3	Over-expressing defence genes	222
14.4	Expressing defence genes under the control of inducible promoters	224
14.5	The use of cloned resistance genes	225
14.6	Engineering broad-spectrum resistance	226
14.7	Resistance based on antagonistic microbes	228
14.8	Expression of vaccines in plants	230
14.9	Concluding remarks	231

13

14

Index