

Reactive Power Management

D M TAGARE

Contents

Foreword		vii
Preface		xi
	PART I—TERMS, POWER QUALITIES, LOADS AND LOAD MANAGEMENT	
1. R	eactive Power—Terms, Definitions and Meters	3
S	ynopsis	3
P	roduction and working of reactive power	3
Α	n inductance: Series and parallel inductances	4
S	eries and parallel inductances	6
S	tray reactance	6
D	Definition of terms used in reactive power control	7
	Different types of power systems	8
S	ignificance of various parameters	11
M	Meters on power systems	14
R	eferences	16
2. Ç	Quality in Electric Power	
S	upply—Part I: Quality Problems	18
S	ynopsis	18
R	lole of Capacitors in Quality Control of Electric Power	18
C	Old system	19
N	New system	19
Ľ	Disturbance	23
S	teady state variations	27
E	iffects of under voltages	29
P	rescribed limits for voltage regulation	30
S	system frequency	32
	Harmonic as a problem area: Generation	
a	nd harmful effects	34
F	Radio Frequency Interference: (RFI)	37

xvi Contents

	Electromagnetic Interference: EMI	38
	Telephone Interference Factor: TIF	38
	Flickers	39
	Neutral grounding systems—safety, power quality	41
	Power factor	44
	References	44
	Annexure 1: Frequency Limits for BHEL	
	Thermal/Nuclear Turbine-Generator set operations	48
3.	Quality in Electric Power	
	Supply—Part II: Indices and Cost of	
	Power Quality Justification for Capital Costs	49
	Synopsis	49
	Reliability	49
	Interruptions and outages	50
	Interruption	50
	Duration of an outage	51
	Cost of outages	53
	Methods of calculating losses	53
	Harmonics: surveying, indices and mitigation and costs of	
	harmonics damages	57
	Surveying for harmonics presence	57
	Harmonic distortion indices	60
	Harmonic measurement in the Indian scenario	60
	Responsibilities for mitigating harmonic problems	60
	Utility side	60
	Consumer side	61
	Costing of harmonics	62
	Cost of loss in capacity	63
	References	64
4.	Costing of Reactive Power—Under a Changing	
	Scenario Justification for Tariffs	67
	Synopsis	67
	Old Method of Costing	67
	Changing scenario	68
	Responsibilities for supplying reactive power	68
	Deeper considerations under Reactive Power Dispatch: (RPD)	69
	Objectives served by costing of reactive power	70
	Sources for reactive power	71

a	xvii
Contents	YATT :

	Costing of reactive power	7.1
	The marginal costs	72
	Opportunity costs with varying marginal costs	74
	Reactive power costs of transmission	75
	Costs of switchable items	76
	Operating costs of an LTC and its transformer	77
	References	81
5.	Load Patterns and	
	Sectorial Distribution of	0.3
	Loads Demand Side Management	83
	Synopsis	83
	Pattern of an electrical power system	83
	The load pattern	83
	Sectorial patterns of load	85
	Residential/Commercial locality load pattern	87
	Industrial load pattern	87
	Agricultural pattern	87
	Bulk loads	88
	Sectorial distribution of Load	88
	Division of capacitor requirement on the	
	energy consumption basis (User side)	91
	Importance of load patterns	91
	Demand Side Management (DSM) load shaping	92
	Retrofitting as a part of Demand Side Management (DSM)	96
	DSM and Reactive Power Management	98
	Forecasting of load patterns	99
	Line losses	99
	References	101
6	Power Tariffs and Market	104
	Forces Shaping of Reactive Power	
	Synopsis	104
	Introduction	104
	Power tariffs	105
	Old power systems and basis for tariffs	105
	Customer categories	106
	Trend of changes in tariff in India:	111
	The Electricity Regulatory Commission	110
	KVAR-based tariffs	111

5.

xviii Contents

	The BEST proposal	117
	New power systems: Revised structures and tariffs	112
	Nature of Transactions	112
	Some additional tariff features in aid of demand	
	side management	114
	Penalties for voltage flicker and harmonic	
	voltage levels	115
	References	121
	Annexure 1: Maharashtra State	
	Electricity Board Existing Tariff for 1999-2000	123
	Annexure 2: A Typical Electricity Bill for a	
	Residential Customer in the USA	128
7.	Reactive Power Requirement	
	of the Utilities—Own and Network Projections	133
	Synopsis	133
	Introduction	133
	Reactive requirements of a transformer	135
	Magnetizing KVAR requirements of transformers	137
	Tap changing in transformers	138
	Effect of reactive loading on a distribution transformer	139
	Generation of harmonics	140
	Reactive power requirements of the transformers for	
	carrying the load current	142
	Distribution lines	143
	Ratio of HT: LT lines—Impact on losses	148
	Total KVAR requirements: Projections for a zone—	
	topside to bottom approach	149
	Reactive power requirements of distribution feeders:	
	Bottom to topside approach	152
	References	155
8.	Reactive Power Supply by the Utilities Synchronous	
	Generators, Synchronous Condensors, Synchronous Motors, EHV Transmission Lines and Capacitors	150
		158
	Synopsis Introduction	158
		159
	Reactive power flow circuit	159

	Synchronous generators	160
	Reactive capability of a synchronous generator	160
	Synchronous machines and capacitors	162
	Synchronous machines	162
	Capacitors	163
	Synchronous machines—Disadvantages	164
	Working of a synchronous condensor	164
	Working of a synchronous motor	165
	Effect of system parameters on the working of synchronous	
	machines	167
	Application of synchronous condensors	167
	Application of synchronous motors	168
	STATCONS: Static convertors	169
	Reactive power and transmission lines	169
	Surge impedance and charging KVA of a line	171
	Voltage drop along an EHV line	174
	Supply of reactive power by utilities in India	175
	References	176
9.	Reactive Power Requirements Under Steady	
	State Voltage Stability and Dynamic Voltage Stability	179
	Synopsis	179
	Stability	179
	Behaviour of system voltages	180
	Stable voltages	180
	Transmission feeder	183
	Stability of a power system	184
	Criteria for stability	184
	Effect of capacitors on stability	185
	Equal area considerations	185
	Loadability of a line: Effect of capacitors	187
	Calculation of critical points and security reserves	188
	Dynamic voltage stability	188
	Universal radial voltage stability limit curves	190
	References	194
	Annexure 1: Some Important Reference Parameters	
	Relative to Indian Conditions	198
10.	Reactive Power Requirements to	
	Cover Transient Voltage Instability	200
	Synopsis	200

	Transient stability	200
	Basic causes for transient instabilities	201
	Transient instability for a feeder	203
	Transient instability for a generator	204
	Transient stability for a generator	205
	A typical complex load	208
	Dynamics of load characteristics	208
	Importance of switching time constants:	
	Protective vs corrective measures	211
	Varieties of static var controllers (SVC)	211
	SVC's instant response to a fault	212
	References	217
11.	System Losses and Loss Reduction Methods	221
	Synopsis	221
	Losses in electrical power systems	221
	Determining losses in distribution systems	222
	Daily load cycle	222
	The losses in a system have two components	223
	Sequential Switch Opening Method—SSOM	237
	Liberalized transhipment method	237
	Evaluation of losses	240
	Incremental losses	240
	Demand loss multiplier	241
	References	243
	Annexure 1: Environmental Measures for Improving	
	Energy Efficiencies	248
12.	Reactive Power Planning in Distribution Systems	251
	Synopsis	251
	Introduction	251
	Complexity of today's power distribution systems	252
	Planning of distribution system	252
	Objectives in planning	253
	Economically optimum investment of power	
	factor correction	254
	Economic justification for reactive power planning	254
	Methods followed by the Electricity Boards in India	265
	Zonal reactive power requirements-EHV and MV	266
	Low tension capacitors, placement in distribution	266

Contents	XX

	<u>.</u>	266
	Line capacitors	267
	Substation and upside capacitors	269
	Standards on capacitor sizes in other countries	269
	Technical considerations for optimization	270
	Retrofitting of capacitor banks	272
	References Newtone Method	277
	Annexure 1: Improved Load Flow—Newtons Method	
13.	LT Distribution Systems—Rural and Urban	278
	Synopsis	278
	An historical review	278
	The North American systems	279
	Advantages of the North American system	280
	Neutral grounding problem	281
	The European systems	283
	Rural systems in India	286
	Loadshedding on rural electric power lines	287
	Distributed generation	290
	References	291
14	4. High Voltage DC Transmission—HVDC	297
	Synopsis	297
	What is HVDC?	297
	Components of an HVDC system	299
	Progress of rectifiers and invertors	299
	Rectifiers	299
	Thyristors	301
	Invertors	301
	Instabilities in the HVDC thyristorized system	302
	Instability on the convertor side	302
	Instability on the inverter side	302
	Harmonics: Types and generation	302
	Harmonics on the ac side	302 303
	Characteristic Harmonics (CH)	303
	Damaging effects of harmonics	303
	Nons-Characteristic Harmonics (NCH)	303
	NCH produced on the ac side	303

	Harmonics on the dc side	
	Interference with televil	305
	Interference with telephone systems Shunt capacitors and harmonic filters	305
	Supporting PKVA granting G	308
	Supporting RKVA supplies: Capacitors and filters Active Filters	311
	References	315
-4 -		319
15	Static VAR Controller—SVC	325
	Synopsis	325
	What is a static VAR controller?	325
	Working of an SVC	326
	Various types of SVCs advantages	0_0
	and disadvantages	330
	Transients produced on switching in three-phase capacitor: Different types of arrangements	
	Losses in an SVC	337
	Prospective applications of an SVC	339
	Dynamic instability in a network	341
	References	342
	Annexure 1: IEEE Benchmark Model for	343
	Static Var Compensator	240
	Annexure 2: Multiple Thyristor Switching	348
	Systems for Three-Phase Capacitors	350
16.	Series Capacitors	356
	Synopsis	
	Basic working of a series capacitor	356
	Working of a mechanically switched capacitor	356 358
	Flip-flop arrangement for a series capacitor	361
	Basic idea	361
	Types of faults and their influence on the ratings of a series	301
	empaction system	361
	Ratings of the components of a series capacitor bank	363
	Capacitor bank	363
	Current ratings	364
	Capacitors	364
	Triggered air gaps	366
	Damping reactor	366
	Current transformers (CT ₁)	367
	Metal Oxide Varister (MOV) supported series	
,	capacitor banks	367
	Thyristor-Controlled Series Capacitors (TCSC)	369

Contents **xxiii**

	Steady state series capacitor control	370
	Grey areas in the operation of varnier control	375
	Plus points of TCSC	375
	Limiting conditions on TCSC	376
	Losses in a module	379
	References	380
17.	Phase Angle Regulators: Inter-phase Controllers	383
	Synopsis	383
	Old type power flow controllers	383
	Overloading of feeders	383
	Regulation of power flow	384
	Series transformer	387
	Thyristorized Control of Phase Angle Regulators (TC - PAR)	388
	EPRI Survey on TC-PAR	389
	Limitations of TC-PAR	390
	IPC-120	394
	Inter-phase power control with voltage injection	395
	Phase shifters and the French networks	397
	Conclusion	397
	References	398
18.	Flexible AC Transmission Systems (FACTS):	
	An Introduction	400
	Synopsis	400
	Transformation of the electric power systems	400
	Problems arising out of quality constraints and	
	solutions in the earlier transmission systems in	
	the 1960's and before	401
	Steady state operation	401
	Operation under transient conditions	401
	Further evolutions in reactive power management	402
	Thyristors on the scene	405
	Latest practices in reactive power management	406
	Invertors	406
	FACTS system	408
	References	410
19	. Static Compensators for	
	Shunt Reactive Power—STATCONS	413
	Synopsis	413
	Working of an invertor	413

xxiv Contents

	A three-level invertor pole	413
	A six-pulse invertor with three level poles	414
	Reducing the harmonics in an invertor output	416
	Selective harmonic elimination modulation (SEHM)	419
	Characteristics of SEHM	420
	Voltage-sourced invertors become a powerful and flexible tool	
	Harmonics and transients on the DC side	420 421
	Invertor as a fast acting switch	421 424
	Working of a STATCON	424
	STATCON vs SVC	424
	References	-
	•	431
20	Static Series Compensation and Unified Power Flow	
	Controllers (UPFC)	434
	Synopsis	4 34
	Manipulating a transmission line for flexibility:	
	Old methods	434
	Power flow along a single transmission	
	line manipulating a transmission line	
	for flexibility: New methods	435
	How does a series controller work?	436
	Fixed series capacitor	438
	SSS 'Capacitor'	438
	Difference between maximum power obtainable	
	with a series capacitor and that with an SSSC	440
	Sub Synchronous Resonance (SSR)	442
	Response to a contingency/dynamic response Rating of an SSSC 'bank'	442
		443
	Unified Power Flow Controller (UPFC)	443
	Functions of Unified Power Flow Controller: (UPFC) Power circle diagrams	443
	UPFC in a line at the sending end	445
	Sending end power Qs-vs-Ps	447
	Modes of operation and controls	449
	Customs Power	4 51
	- 11 -	453
	References	456
21.	FACTS—Present and Future	459
	Synopsis	459
	FACTS—A leader in transmission technology	459

	Changing scenario in power systems parameters: FACTS	461
	prospects for FACTS devices in India	463
1.		frag K- H.
1	PART IV—REACTIVE POWER MANAGEMENT—USER SID	
	(A) APPLIANCES WITH INTEGRAL POWER FACTOR COMPRISATION	
	(B) System with External powersactor compressation	4-1
22.	Reactive Power Compensation through the Integral	467
	Part of an Apparatus: Residential Appliance	
	Synopsis	467
	Overall picture of the power requirement in India	467
	Lighting loads	468
	General lighting	468
	Working of a fluorescent lamp	470
	Ballasts for fluorescent tubes	470
	Street lights	471
	Total reactive power requirement of the	47 1
	lighting load in India	471
	Harmonics	474
	Other loads	482
	Conclusion	
	References	484
	Annexure 1: Estimated Electricity Used by End-Use	488
	in India 1989-90	400
23	3. Reactive Power Compensation through the Integral or a	
	Complimentary Part of an Apparatus: Industrial-Motors	490
	Synopsis	49 0
	Induction motors	490
	Adjustable speed drives—ASDs and motors	492
	ASDs making inroads	492
	Working of an ASD	493
	The voltage boost	494
	Effects of the high frequency output from the invertor	495
	Power factor correction and harmonic control for ASDs	496
	Some other considerations for ASDs	497
	Efficiencies of induction motors and inductive	401
	motor drives	49
	Standard motors	49)
	Energy-efficient motors	49
	Features of energy efficient motors	49

xxvi Contents

	Performance trade-off: Efficiency and power factor	49
	Saturation factor	49
	Operation at high and low voltages	50
	Surge withstand capacity of induction motors	50
	Surge protection capacitors for induction motors	504
	Reliability of surge protection capacitors	50
	ASDs and surge capacitors	500
	Reactive power demand by induction motors on	
	the networks in India	508
	References	509
24.	Reactive Power Planning: User Side Selection of Capacitors	512
	Synopsis	512
	Purpose of using capacitors	512
	How to select a capacitor: Deciding factors	516
	Types of capacitors available, their	
	characteristics and limitations	522
	Metallized polypropylene or self-healing type	
	of capacitors (MPP or SH)	522
	Metallized polypropylene type	522
	Characteristics of MPP capacitors	52 3
	Double metallized paper type of capacitors	52 3
	Life of MPP capacitors	524
	Mixed dielectric capacitors	524
	All polypropylene—Separate aluminum	
	foil type of capacitors	524
	References	525
	Annexure 1: How to Select Capacitor	527
	Illustrative Example	527
	Annexure 2: Capacitor Ratings for Direct	
	Connection Across Induction Motors	530
25.	Reactive Power Planning: User Side System Design,	
	Controls and Protection	531
	Synopsis	531
	LT capacitors: Position in the scenario and standard sizes	531
	Controls of LT capacitor bank	532
		532
	Automatic control of capacitors	533
	Types of automatically controlled relays	533

Contents	xxvii

	Current sensing relay	533
	Power factor sensing relay	534
	Basic disadvantages by power factor of control	534
	KVAR sensing relay	535
		536
	Voltage sensing relay Common features of automatic relays	536
	Susceptibilities of APFC relays	539
	P.F. relays with special features	542
	•	542
	References	
	Annexure 1: Current Sensing Relay Used in Rural Agricultural Transformers	545
	Annexure 2: Main Accessories for APFC Panels	549
26.	Reactive Power Planning—User Side Harmonics,	550
	Effects and Control	
	Synopsis	550
	Design considerations	550
	IEC—61642 defines various terms	551
	Different methods for harmonic reduction	554
	Shunt capacitors	555
	Tuned capacitor filters	555
	De-tuned/damped filters	556
	Filtering efficiencies	557
	Components of a filter	558
	Capacitors	558
	Reactors	558
	Resistance	559
	Ripple frequency controls and filters	559
	Filters LT voltage networks (upto 1000 V)	561
	Filters on HT networks (for Voltages above 1000 V)	562
	References	563
2	7. Reactive Power Considerations—Petroleum Industries	566
	Synopsis	566
	Special features of petroleum industries	566
	The production centres and pipelines	567
	The refineries	562
	The induction motors	568
	Energy efficiencies of motors	568
	Starting of large induction motors	570

xxviii Contents

	Capacitors connected directly across the motors	572
	Surges on large motors	573
	Typical causes for surge generation	574
	Parameters affecting the peak and rise time	3/4
	of surge voltages	574
	Surge protection	574 576
	Adjustable speed drives (ASDs) for large sized motors	577
	ASDs and flexible coupling devices	580
	References	580
28	. Reactive Power Management in Industries:	000
	Cement Industry, Pulp and Paper Industries	586
	Section I: Cement Industries	586
	Synopsis	586
	Special features of cement industries	586
	A general layout and the process flow	587
	Roller mills	588
	Major components of electrical systems	588
	References	592
	Annexure 1: Environmental Hazards	594
	Section II: Pulp, Paper and Printing Industries	595
	Synopsis	595
	Nature of electrical load	595
	References	601
29.	Reactive Power Management in	
	Industries: Coal Mining, Glass,	
	Textile, and Plastic Industries	604
	Section I: Coal Mining	604
	Synopsis	604
	Mining processes	604
	Perspective of coal mining	604
	Future course for reactive power control	609
	References	613
	Section II: Glass, Textiles, Plastic and Rubber Industries	616
	Synopsis	616
	Glass industry	616
	Textile industries	619
	Some useful hints for a harmonic survey	620
	Remedial actions suggested	620

Δ	
Contents	

	_	
-		v
A-2		

	Rubber and plastic film industries	621
	References	623
30.	Reactive Power Management in Industries: Industrial Arc Furnaces Rolling Mills and Other Major Power Consumers	625
	Section I: Industrial Arc Furnaces	625
	Synopsis	625
	Electric arc furnaces	625
	Basic objectives of a steel plant	626
	Pre-requisites for achieving these objectives	627
	Operations of a furnace transformer	631
	Amplification of harmonics and surges	631
	The inductances	631
	The capacitances	631
	Filters for control of harmonics	632
	De-tuning of a filter	632
	Remedial measures	633
	Power factor of an arc furnace	636
	Operation of a bulk capacitor bank	639
	Filters on a steel plant	639
	Induction melting furnaces	642
	References	645
	Annexure 1: Measures to Improve Electric Arc	
	Furnace Efficiency in India	647
	Section II: Rolling Mills	648
	Section III: Other Major Power Consumers	651
	Reactive power demands	652
	Special industry group	652
	References	652
31	Reactive Power Management in Industries: Railway	
.	Electric Traction Systems	654
	•	654
	Synopsis Nature of railway electric load	654
	Types of railway electric systems	655
	Details of a 25 kV traction system	656
	Distribution transformer for railroad supply	659
	Single phase transformers	660
	Transformer type and voltage unbalance	660
	Transformer type and voltage unbalance	000

30.

	Harmonics in railways	662
	Sources of harmonics	662
	Flow of harmonics	663
	References	
	Annexure 1: Synchronous Condensor Across an	671
	Unbalanced Load	675
	Annexure 2: SVC Application Study Notes on	675
	Railway Traction Systems	676
32	. Reactive Power Management under Distributed Generation	
	Synopsis	
	Introduction	678
	Power systems become larger and larger	678
	Fossil-based fuels pollute the atmosphere: Greenhouse effect	678
	The Kyoto protocol	678
	Birth of distributed generation	679
	Induction generators: Asynchronous generators	679
	Synchronous generators	679 680
	Seasonal variation in wind power	680
	Extreme ratios between peak: Minimum	000
	powers in wind energy	681
	Problems with wind energy	681
	Grid-side problems faced by generators	683
	Role of capacitors in a windmill generator:	000
	Minimum capacitance is necessary	685
	Minimum capacitance required for excitation	685
	Voltage regulation of a wind generator	686
	Connections of capacitors across a wind generator	686
	Compound connections	689
	A wind generator branch gets disconnected	
	from the grid: Safety measures	690
	A running inductance generator is switched on	
	against the grid supply	692
	A suggested method for capacitor	
		692
	References	693
33.	Reactive Power Management—Future Projections	697
		697
		697
	Primary energy sources of the world	698

Contents xxxi

Growth in power capacity	699
With oil unreliability, the electric power	0,7
industry looks inwards	700
Vertical structure of electric power industry under-	
goes a change	700
Renewable energy sources	701
Primary energy sources for the future	702
Transmission growth under the old system	704
Future growth in transmission	705
Technological developments in transmission	706
Changing nature of electric power consumers	708
References	709
Index	713