
Digital Shearography

Theory and Application of Digital Speckle Pattern Shearing Interferometry

Wolfgang Steinchen Lianxiang Yang

Contents

Preface / xi List of Symb	ools / xiii					
Chapter 1	Introduction and Approach to Problem / 1					
1.1 1.2	Introduction / 1 Speckle patterns: an historical retrospect / 2					
1.3 1.4	Laser speckle phenomenon / 6 Speckle statistics / 9					
1.5 1.6	Reduction and exploitation of speckle noise / 15 State of the shearographic art / 22					
Chapter 2	Shearographic Metrology / 27					
2.1 2.2	Fundamentals of the optical setup for shearography / 30 Refraction and interference of light waves passing a shearing element (through a low-incline glass wedge) / 35					
2.3	Relationship between the mechanics of components and the fringe interpretation of the shearogram / 38					
2.4	Generation of a shearogram / 45					
2.5	Conventional shearography / 49					
2.6	Fringe readout by Fourier filtering / 52					
Chapter 3	Simple Digital Shearography / 55					
3.1	Real-time observation of a shearogram / 56					
3.2	ϵ					
3.3	Shearograms of elementary components / 62					
	3.3.1 Bending strain of a cantilever / 623.3.2 Tensile strain / 64					
	3.3.3 Steadily varying cross section of a tensile bar / 64					
	3.3.4 Torsion of a tube / 65					
	3.3.5 Evaluation of the shearograms / 67					
3.4	Rigid-body motion / 69					
Chapter 4	Phase-Shifting Shearography / 73					
4.1	Fundamentals of the phase-shifting technique / 73					
4.2	Arrangement of phase-shifting shearography / 75					

viii Contents

4.3	Calculation of the relative phase change Δ in a shearogram / 77					
4.4	The cranked tensile bar h/6 as a calibration object / 84					
Chapter 5	Evaluation of the Interferogram / 93					
5.1	Filtering of the phase map / 93					
5.2 5.3	Demodulation / 100 Determination of the absolute magnitude of the fringe order					
5.5	independent of boundary conditions / 107					
	5.3.1 General method for determining the absolute magnitude of the fringe order independent of the boundary conditions created by static loading / 107					
Chapter 6	Nondestructive Testing of Materials / 117					
6.1 6.2	Principle of shearographic testing of materials / 117 Phase-shifting shearography for nondestructive testing / 120					
6.3	The experimental setup for NDT / 122					
	6.3.1 Introduction / 122					
	6.3.2 Laser diodes for interferometric measurements / 1246.3.3 Experimental results by laser diode measurement / 126					
	6.3.4 General process of interferometric analysis / 128					
6.4	6.3.5 Conclusions / 130 Applications of interferometric NDT / 130					
	6.4.1 Investigations of GFRP and CFRP components / 130					
	6.4.2 Types of loading for detecting emerging defects / 1316.4.3 Investigation of compound materials and sintered					
	metals / 140					
6.5	Conclusions / 142					
Chapter 7	Strain Measurement / 145					
7.1	Introduction / 145					
7.2 7.3	State of the art with respect to strain measurement / 145 State of shearographic strain measurement / 145					
1.5	7.3.1 Geometrical relations / 147					
	7.3.2 Optical relations / 148					
7.4	Determination of the pure in-plane strains and the pure out-of- plane component using two illuminating beams / 149					
7.5	Complete determination of the 2D deformation tensor / 154					
	7.5.1 Principle and setup for the direct measurement of					
	$\partial u/\partial x$, $\partial u/\partial y$, $\partial v/\partial x$, $\partial v/\partial y$, and $\partial w/\partial x$, $\partial w/\partial y$ for a					
	single external loading / 154 7.5.2 Feasibility of the arrangement / 159					
	7.5.3 Operation of the Shearwin program / 161					

Contents

7.6	Application	of shear	ographic	strain	measurement /	1	67
7.0	rippiication	or silear	UZIADIIIC	ou am	incasarement /		v

- 7.6.1 Full-field and direct strain measurement / 167
- 7.6.2 Shearographic strain measurement using a tensile testing machine / 175
- 7.6.3 Shearographic investigation of strain concentration at a crack tip / 182
- 7.6.4 Shearographic investigation of local strain on the surface of concrete / 186
- 7.7 Shape identification by the shearographic technique / 191
- 7.8 Complete determination of flexural strains in thin plates under a single loading / 193

Chapter 8 Vibration Analysis Using Continuous-Wave Lasers / 203

- 8.1 Introduction / 203
- 8.2 Real-time observation of vibration by continuous-wave illumination / 205
 - 8.2.1 Real-time subtraction with a fixed reference frame / 206
 - 8.2.2 Real-time subtraction with a continuously refreshed reference frame / 209
 - 8.2.3 Quality assurance applications of real-time observation using time-averaged shearography / 212
 - 8.2.4 General method for determining the absolute fringe order independent of the boundary conditions created by dynamic loading / 215
 - 8.2.5 Industrial applications investigated by time-averaged digital speckle pattern shearing interferometry / 218
 - 8.2.6 Accuracy of time-averaged interferometry / 220
 - 8.2.7 Single- and multi-(composite) mode vibration / 220
- 8.3 Quantitative evaluation of a digital shearogram of a vibrating object / 222
 - 8.3.1 Stroboscopic illumination used in conjunction with the phase-shifting technique / 223
 - 8.3.2 Implementation of the arrangement for measuring vibrations by stroboscopic illumination / 226
 - 8.3.3 Determination of the vibration mode and the dynamic bending and shear strains of the shearogram / 228
- 8.4 Numerical evaluation of stroboscopically illuminated shearograms / 236
 - 8.4.1 Phase maps for different trigger positions / 237
 - 8.4.2 Determination of the displacement field from the deformation gradients / 241
 - 8.4.3 Theory and development of an advanced analysis program / 242
 - 8.4.4 Conclusions / 243

X Contents

Chapter 9	Digital Shearography for Quantifying Heat Flow Rate / 245
9.1	Measurement tool / 245
9.2	Measurement principle / 246
9.3	Experimental investigation / 249
9.4	Quantitative evaluation / 253
9.5	Optimization of a heat exchanger / 257
9.6	Conclusions and outlook / 261
Chapter 10	Analysis of Deviations / 263
10.1	Comparison of results obtained by different experimental methods / 263
10.2	Shearing amount / 270
10.3	
	10.3.1 Out-of-plane measurement / 276
	10.3.2 In-plane measurement / 279
10.4	
10.5	Demodulation / 285
10.6	Rigid-body motion / 285
10.7	Speckle size and numerical aperture / 287
10.8	Measurement range of shearography / 288
Chapter 11	Assessment of Digital Speckle Pattern Shearing Interferometry / 295
11.1	State of the art / 295
11.2	
11.3	Applications of digital shearography / 299
Patent Applie	cations for Digital Shearography / 301