Adaptive Beaming and Imaging in the Turbulent Atmosphere

Vladimir P. Lukin Boris V. Fortes

CONTENTS

Preface to the English edition / ix

Introduction / xi

Chapter 1 Mathematical Simulation of Laser Beam Propagation in the Atmosphere / 1

- 1.1 Numerical Solution to Problems of Coherent Radiation Propagation / 2
 - 1.1.1 Wave equation / 2
 - 1.1.2 Thermal blooming of high-power laser beams / 5
 - 1.1.3 Turbulent distortions of a wavefront / 11
- 1.2 Generation of 2D Random Phase Screens by the Fourier Transform Method / 14
- 1.3 Dynamic Simulation of the Large-Scale Part of Turbulent Aberrations of an Optical Phase / 25
- 1.4 Modification of the Numerical Model for Partially Coherent Beams / 33
- 1.5 Lens Transformation of Coordinates in an Inhomogeneous Wave Equation / 37

References / 42

Chapter 2 Modeling an Adaptive Optics System / 47

- 2.1 Reference Wave in an Adaptive Optics System / 48
 - 2.1.1 Counterpropagating a reference beam in a phase conjugation system / 49
 - 2.1.2 Guide star in an adaptive telescope / 50
- 2.2 Wavefront Sensors / 56
 - 2.2.1 Ideal quadrature sensors / 56
 - 2.2.2 Ideal phase difference sensors / 57
 - 2.2.3 Hartmann sensor / 60
- 2.3 Wavefront Correctors / 65
 - 2.3.1 Modal correctors / 65
 - 2.3.2 Deformable mirrors / 67
 - 2.3.3 Segmented correctors / 68

References / 71

Chapter 3 Adaptive Imaging / 77

- 3.1 Calculation and Minimization of Image Distortions / 78
 - 3.1.1 Imaging in an atmosphere-telescope system / 78
 - 3.1.2 Minimization of the width of a turbulent PSF / 81
- 3.2 Study of Angular Resolution and Contrast in Large Residual Wavefront Distortions / 86
 - 3.2.1 Effect of a corrector's spatial resolution on PSF parameters / 87
 - 3.2.2 Measurement of distortions under limited photon flux / 94
 - 3.2.3 Effect of cone anisoplanatism / 96
- 3.3 Phase Correction of Turbulent Distortions Under Strong Intensity Scintillation / 99

References / 104

Chapter 4 Minimization and Phase Correction of Thermal Blooming of High-Power Beams / 107

- 4.1 Amplitude Optimization for Thermal Blooming Along a Vertical Path / 108
 - 4.1.1 Power optimization for beams with different cross-sectional intensity distributions / 109
 - 4.1.2 Dependence of wind direction on the longitudinal coordinate / 112
- 4.2 Programmed Modal Phase Correction of Thermal Blooming Along a Vertical Path / 114
- 4.3 Method of Phase Conjugation on a Horizontal Path / 118
- 4.4 Modal Phase Conjugation on a Horizontal Path / 126
 - 4.4.1 Calculation of the efficiency of modal phase conjugation / 126
 - 4.4.2 Modification of modal phase conjugation / 130

References / 133

Chapter 5 A Laser Reference Beacon as a Key Element of an Adaptive Optics System / 135

- 5.1 Some Features of Reflected Optical Wave Fluctuations in a Turbulent Atmosphere / 136
 - 5.1.1 Enhanced backscatter / 136
 - 5.1.2 Phase fluctuations of specularly reflected waves / 137
 - 5.1.3 Random displacements of the image of a sensed volume in a turbulent atmosphere / 138
- 5.2 Improvement of the Quality of an Atmospheric Image by Adaptive Optics Methods / 141
- 5.3 A Modern Concept of Adaptive Optics Systems with a Laser Guide Star / 157
 - 5.3.1 Some features of fluctuations of reflected waves / 158

Contents

5.4	Monostatic and Bistatic Schemes for Formation of a Laser Guide Star / 159		
	5.4.1	Correlation between random displacements of a laser beam and a natural star image for a bistatic scheme / 159	
	5.4.2	Optimal algorithm for tip-tilt correction / 170	
	5.4.3	A laser guide star as an extended source / 174	
5.5	Hybric	brid Scheme of Forming a Laser Guide Star / 176	
5.6	Two Bistatic Schemes for LGS Formation / 179		
	5.6.1	Jitter of an extended source / 182	
	5.6.2	Basic shortcomings of schemes a and b for LGS formation / 186	
	5.6.3	A differential scheme / 186	
5.7	A New Scheme for LGS Formation / 188		
	5.7.1	Attempt to reduce the effect of angular anisoplanatism / 189	
Refe	erences /	190	

Conclusion / 195

Index / 199