


Materials Selection in Mechanical Design

Michael F. Ashby

Contents

Preface

Acknowledgements		
Acknowledgements		
Fe	atures of the Third Edition	xii
1	Introduction 1.1 Introduction and synopsis 1.2 Materials in design 1.3 The evolution of engineering materials 1.4 Case study: the evolution of materials in vacuum cleaners 1.5 Summary and conclusions 1.6 Further reading	
2	The design process 2.1 Introduction and synopsis The design process Types of design Design tools and materials data Function, material, shape, and process Case study: devices to open corked bottles Summary and conclusions Further reading	1 1: 1: 1: 1: 2: 2:
3	Engineering materials and their properties 3.1 Introduction and synopsis 3.2 The families of engineering materials 3.3 The definitions of material properties 3.4 Summary and conclusions 3.5 / Further reading	2: 2: 3: 4: 4:
.4	Material property charts 4.1 Introduction and synopsis 4.2 Exploring material properties 4.3 The material property charts 4.4 Summary and conclusions 4.5 Further reading	4: 4: 4: 5: 7: 7:
5	Materials selection — the basics 5.1 Introduction and synopsis 5.2 The selection strategy 5.3 · Attribute limits and material indices 5.4 The selection procedure	79 80 81 83 93

vi Contents

	5.5	Computer-aided selection	99
	5.6	The structural index	102
	5.7	Summary and conclusions	103
	5.8	Further reading	104
í	Mate	rials selection—case studies	105
	6.1	Introduction and synopsis	106
	6.2	Materials for oars	106
	6.3	Mirrors for large telescopes	110
	6.4	Materials for table legs	114
	6.5	Cost: structural material for buildings	117
	6.6	Materials for flywheels	121
	6.7	Materials for springs	126
	6.8	Elastic hinges and couplings	130
	6.9	Materials for seals	133
	6.10	Deflection-limited design with brittle polymers	136
	6.11	Safe pressure vessels	140
	6.12	Stiff, high damping materials for shaker tables	144
	6.13	Insulation for short-term isothermal containers	147
	6.14	Energy-efficient kiln walls	151
	6.15	Materials for passive solar heating	154
	6.16	Materials to minimize thermal distortion in precision devices	157
	6.17	Nylon bearings for ships' rudders	160
	6.18	Materials for heat exchangers	163
		Materials for radomes	168
	6.20	Summary and conclusions	172
	6.21	Further reading	172
•	Proce	esses and process selection	175
	7.1	Introduction and synopsis	176
	7.2	Classifying processes	177
	7.3	The processes: shaping, joining, and finishing	180
	7.4	Systematic process selection	195
	7.5	Ranking: process cost	202
	7.6	Computer-aided process selection	209
	7.7	Supporting information	215
	7.8	Summary and conclusions	215
	7.9	Further reading	216
	Proce	ess selection case studies	219
	8.1	Introduction and synopsis	220
	8.2	Forming a fan	220
	8.3	Fabricating a pressure vessel	223
	8.4	An optical table	227
	8.5	Economical casting	230
	9 4	Computer based calcation, a manifold include	222

		Contents	vii
	 8.7 Computer-based selection: a spark-plug insulator 8.8 Summary and conclusions 		235 237
9	Multiple constraints and objectives 9.1 Introduction and synopsis 9.2 Selection with multiple constraints 9.3 Conflicting objectives, penalty-functions, and exchange constants 9.4 Summary and conclusions 9.5 Further reading Appendix: Traditional methods of dealing with multiple constraints and objectives		239 240 241 245 254 255 256
10	10.1 Introduction and synopsis 10.2 Multiple constraints: con-rods for high-performance engines 10.3 Multiple constraints: windings for high-field magnets 10.4 Conflicting objectives: casings for a mini-disk player 10.5 Conflicting objectives: materials for a disk-brake caliper 10.6 Summary and conclusions		261 262 262 266 272 276 281
	Selection of material and shape 11.1 Introduction and synopsis 11.2 Shape factors 11.3 Microscopic or micro-structural shape factors 11.4 Limits to shape efficiency 11.5 Exploring and comparing structural sections 11.6 Material indices that include shape 11.7 Co-selecting material and shape 11.8 Summary and conclusions 11.9 Further reading		283 284 285 296 301 305 307 312 314 316
12			317 318 319 322 326 328 331 333 335 337
13	Designing hybrid materials 13.1 Introduction and synopsis 13.2 Filling holes in material-property space 13.3 The method: "A + B + configuration + scale" 13.4 Composites: hybrids of type 1		339 340 342 346 348

viii Contents

	13.3	Sandwich structures: hybrids of type 2	230
	13.6	Lattices: hybrids of type 3	363
	13.7	Segmented structures: hybrids of type 4	371
	13.8	Summary and conclusions	376
	13.9	Further reading	376
14	Hybrid	d case studies	379
	14.1	Introduction and synopsis	380
	14.2	Designing metal matrix composites	380
	14.3	Refrigerator walls	382
	14.4	Connectors that do not relax their grip	384
	14.5	Extreme combinations of thermal and electrical conduction	386
	14.6	Materials for microwave-transparent enclosures	389
	14.7	Exploiting anisotropy: heat spreading surfaces	391
	14.8	The mechanical efficiency of natural materials	393
	14.9	Further reading: natural materials	399
15	Inform	nation and knowledge sources for design	401
	15.1	Introduction and synopsis	402
	15.2	Information for materials and processes	403
	15.3	Screening information: structure and sources	407
	15.4	Supporting information: structure and sources	409
	15.5	Ways of checking and estimating data	411
	15.6	Summary and conclusions	415
	15.7	Further reading	416
16	Mater	ials and the environment	417
-	16.1	Introduction and synopsis	418
	16.2	The material life cycle	418
	16.3	Material and energy-consuming systems	419
	16.4	The eco-attributes of materials	422
	16.5	Eco-selection	427
	16.6	Case studies: drink containers and crash barriers	433
	1,6.7	Summary and conclusions	435
	16.8	Further reading	436
17	Materials and industrial design		439
	17.1	Introduction and synopsis	440
	17.2	The requirements pyramid	440
	17.3	Product character	442
	17.4	Using materials and processes to create product personality	445
	17.5	Summary and conclusions	454
	17.6	Further reading	455
18	Forces	s for change	457
	18.1	Introduction and synopsis	458
	18.2	Market-pull and science-push	458
	18.3	Growing population and wealth, and market saturation	464

		Contents	IX
40.4	-		
18.4	Product liability and service provision		465
18.5	Miniaturization and multi-functionality		466
18.6	Concern for the environment and for the individual		467
18.7			469
18.8	Further reading		469
Appendix	A Useful solutions to standard problems	-	471
	Introduction and synopsis		473
A.1	Constitutive equations for mechanical response		474
A.2	Moments of sections		476
A.3	Elastic bending of beams		478
A.4	Failure of beams and panels		480
A.5	Buckling of columns, plates, and shells		482
A.6	Torsion of shafts		484
A.7	Static and spinning disks		486
. A.8	Contact stresses		488
A.9	Estimates for stress concentrations		490
× A.10	Sharp cracks		492
A.11 دي يا	Pressure vessels		494
A.12	Vibrating beams, tubes, and disks		496
. A.13	Creep and creep fracture		498
A.14	Flow of heat and matter		500
A,15	Solutions for diffusion equations		502
A.16	Further reading		504
 	D. Manufal ladian		505
	B Material indices		507
B.1	Introduction and synopsis		508
B.2	Use of material indices		508
Appendix	C Data and information for engineering materials		513
C.1	Names and applications: metals and alloys		514
C.2	Names and applications: polymers and foams		515
C.3	Names and applications: composites, ceramics, glasses, and		
	natural materials		516
C.4	Melting temperature, $T_{\rm m}$, and glass temperature, $T_{\rm g}$		518
· · C.5	Density, p		520
C.6	Young's modulus, E		522
C.7	Yield strength, σ_{v_1} and tensile strength, σ_{r_2}		524
C.8	Fracture toughness (plane-strain), K_{1C}		526
C.9	Thermal conductivity, λ		528
C.10	Thermal expansion, α		530
C.11	Approximate production energies and CO ₂ burden		532
C.12	Environmental resistance		534
			JJ4

C.12

x Contents

Appendix D Information and knowledge sources for a	materials and processes 537
D.1 Introduction	538
D.2 Information sources for materials	538
D.3 Information for manufacturing processes	552
D.4 Databases and expert systems in software	553
D.5 Additional useful internet sites	554
D.6 Supplier registers, government organization	s, standards and
professional societies	555
Appendix E Exercises	553
E.1 Introduction to the exercises	558
E.2 Devising concepts	559
E.3 Use of material selection charts	559
E.4 Translation: constraints and objectives	562
E.5 Deriving and using material indices	56
E.6 Selecting processes	574
E.7 Multiple constraints and objectives	579
E.8 Selecting material and shape	58
E.9 Hybrid materials	594
Index	59: