

FAILURE CRITERIA IN FIBRE REINFORCED POLYMER COMPOSITES:

The World-Wide Failure Exercise

A Composites Science and Technology Compendium

Editors: M.J. Hinton, A.S. Kaddour, P.D. Soden

Contents

Preface	• • • • • • • • • • • • • • • • • • • •	v
About the ed	litors	vii
Section 1	The World-Wide Failure Exercise: Its Origin, Concept and Content	1
Chapter 1.1	The world-wide failure exercise: Its origin, concept and content M.J. Hinton, A.S. Kaddour and P.D. Soden	2
Section 2	Test Cases, Lamina Data and Experimental Results Under Biaxial Loads	29
Chapter 2.1	Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates <i>P.D. Soden, M.J. Hinton and A.S. Kaddour</i>	30
Chapter 2.2	Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: Failure exercise benchmark data	50
	P.D. Soden, M.J. Hinton and A.S. Kaddour	52
Section 3	Description of the Individual Failure Theories by their Originators	97
Chapter 3.1	Prediction of composite laminate fracture: Micromechanics and progressive fracture	
Chapter 3.2	P.K. Gotsis, C.C. Chamis and L. Minnetyan	98
Chapter 3.3	G.C. Eckold	121
Chapter 3.4	E.C. Edge	140
•	L.N. McCartney	157
Chapter 3.5	Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates	
Chapter 3.6	L.J. Hart-Smith	179
Chapter 3.7	L.J. Hart-Smith	219
	A. Puck and H. Schürmann	264

Chapter 3.8	Prediction of laminate failure with the Rotem failure criterion	298
Chapter 3.9	A. Rotem	290
	laminates	216
GI . 2.10	C.T. Sun and J.X. Tao	316
Chapter 3.10	A progressive quadratic failure criterion for a laminate K-S. Liu and S. W. Tsai	334
Chapter 2.11	A strain-energy based failure criterion for non-linear analysis of	227
Chapter 5.11	composite laminates subjected to biaxial loading	
	W.E. Wolfe and T.S. Butalia	353
Chapter 3.12	The strength of multilayered composites under a plane-stress state	
Chapter 5.12	P.A. Zinoviev, S.V. Grigoriev, O. V. Lebedeva and L. R. Tairova	379
Chapter 3.13	Predicting the nonlinear response and progressive failure of composite	
Onaprer 2772	laminates	
	T.A. Bogetti, C.P.R. Hoppel, V.M. Harik, J.F. Newill and B.P. Burns	402
Chapter 3.14	The predictive capability of failure mode concept-based strength criteria	
•	for multidirectional laminates	
	R.G. Cuntze and A. Freund	429
Chapter 3.15	Composite laminate failure analysis using multicontinuum theory	
	J.S. Mayes and A.C. Hansen	490
Chapter 3.16	A bridging model prediction of the ultimate strength of composite	
	laminates subjected to biaxial loads	
	Z.M. Huang	518
Chapter 3.17	Expanding the capabilities of the Ten-Percent Rule for predicting the	
	strength of fibre-polymer composites	507
	L.J. Hart-Smith	597
Section 4	A Comparative Study of Failure Theories and Predictions for Fibre	
	Polymer Composite Laminates: Part (A)	643
Chapter 4.1	A comparative study of failure theories and predictions for fibre	
-	polymer composite laminates: Part (A)	
	A.S. Kaddour, M.J. Hinton and P.D. Soden	644
Section 5	Comparison Between the Individual Theoretical Predictions and	
Section 5	Experimental Results	702
Chapter 5.1	Application of progressive fracture analysis for predicting failure	
Chapter 511	envelopes and stress–strain behaviors of composite laminates: A	
	comparison with experimental results	
	P.K. Gotsis, C.C. Chamis and L. Minnetyan	703
Chapter 5.2	Failure criteria for use in the design environment	
-	G.C. Eckold	726
Chapter 5.3	A comparison of theory and experiment for the stress-based	
	Grant-Sanders method	_
	<i>E.C. Edge</i>	739

Chapter 5.4	Comparison between theories and test data concerning the strength of various fibre-polymer composites	
Chapter 5.5	L.J. Hart-Smith	770
Chapter 5.6	L.N. McCartney	810
Chapter 5.7	A. Puck and H. Schürmann	832
Chapter 5.8	A. Rotem	877
Chapter 5.9	C.T. Sun, J. Tao and A.S. Kaddour	890
Chapter 5.10		903
Chapter 5.11	T.S. Butalia and W.E. Wolfe	922
Chapter 5.12	P.A. Zinoviev, O.V. Lebedeva and L.P. Tairova Predicting the nonlinear response and failure of composite laminates: Correlation with experimental results	943
Chapter 5.13	T.A. Bogetti, C.P.R. Hoppel, V.M. Harik, J.F. Newill and B.P. Burns The predictive capability of failure mode concept-based strength criteria for multi-directional laminates – Part B	961
Chapter 5.14	R.G. Cuntze	976
Chapter 5.15	J.S. Mayes and A.C. Hansen	1026
	Z-M. Huang	1045
Section 6	Predictive Capabilities of Nineteen Failure Theories and Design Methodologies for Polymer Composite Laminates. Part B: Comparison With Experiments	1072
Chapter 6.1	Predictive capabilities of nineteen failure theories and design methodologies for polymer composite laminates. Part B: Comparison with experiments	
	A.S. Kaddour, M.J. Hinton and P.D. Soden	1073

Section 7	Recommendations for Designers and Researchers Resulting from the World-Wide Failure Exercise	1222
Chapter 7.1	Recommendations for designers and researchers resulting from the world-wide failure exercise	
	P.D. Soden, A.S. Kaddour and M.J. Hinton	. 1223
Author Index	· · · · · · · · · · · · · · · · · · ·	. 1253