The polyurethanes

Editors: David Randall and Steve Lee

Contents

Ch	apter .	Page	Chapter	Page
1.	Introduction to polyurethanes	1	Raw materials used in polyurethanes	42
	Cost and processing advantages	3	Isocyanates	42
	Properties of polyurethanes	3	Polyol blends	43
	Types of polyurethanes	4	Pre-formulated mixtures	44
	Applications of polyurethanes	6	Thermoplastic polyurethanes	44
	Industry structure	7	Handling of polyurethane chemicals	44
	Future trends	8	Occupational hygiene monitoring for	
			isocyanates	46
2.	The global polyurethanes market	9	Storage and transport of polyurethane	
	Drivers for growth	9	chemicals	47
	Technology growth factors	12	Drum stock	47
	Supply and demand balance	13	Intermediate bulk containers	
	Applications	16	(IBCs)	48
	Automotive	17	Bulk storage	48
	Coatings	18	Manufacture and handling of	
	Construction	18	polyurethanes in the factory	49
	Footwear	19	Flexible foam	49
	Furniture	20	Rigid foam	50
	Thermal insulation	20	Thermoplastic polyurethanes	51
	Replacement challenges	21	Use of polyurethanes	51
	-		Polyurethanes and fire	51
3.	The life-cycle of polyurethanes	23	Flexible foam and fire	53
	Life-Cycle Assessment (LCA)	24	Furniture and mattresses	53
	Polyurethane raw materials		Automotive	55
	production phase	26	Flame retardancy	55
	The product manufacture phase	28	Test methods	56
	Polyurethane factory emissions	28	Rigid foams, composite wood panels	
	Production waste and scrap	29	and fire	58
	The use phase	30	USA	59
	Energy efficiency	30	China	60
	Ecolabels	32	EU and EFTA	60
	Environmental declarations	33	Performance-based codes	62
	Indoor air	34	Other polyurethane applications and fire	e 6
	End-of-life phase	35	Effluents from a fire	6
	Waste management of			
	polyurethanes	35	5. Isocyanates	6
			Reaction chains	6.
4.	Product Stewardship	39	Benzene to MDI	6
	Regulatory framework	40	Toluene to MDI	64
	Product design and development	40	Hexamethylene diamine to HDI	
			(and derivatives)	6

Ch	apter	Page	Ch	apter	Page
	Acetone to IPDI and derivatives	.,		Structure	98
	including other uses for			Propylene oxide-ethylene oxide	20
	isophorone and IPDA	64		polyether polyols	99
	MDA (DADPM) to H ₁₂ MD1	69		Standard polyether polyols	101
	Nitration process	70		Rigid foam applications	101
	Hydrogenation process	71		Flexible foam applications	103
	Liquid slurry phase process	72		Modified polyether polyols	104
	Liquid-vapour slurry phase			Graft dispersions	104
	process (aniline)	72		Amine-terminated polyethers	106
	Vapour phase fixed bed (aniline)	72		Polyether polyols from tetrahydrofuran	106
	Vapour phase fluidised bed			Polyester polyols	107
	(aniline)	73		Linear or lightly branched	
	Aniline from phenol	73		aliphatic polyester polyols	108
	Aniline-formaldehyde condensation	73		Polycaprolactories	110
	Phosgenation process	76		Aromatic polyester polyols	110
	Purification	78		Polycarbonate polyols	111
	Isocyanate derivatives	79		Miscellaneous polyols	111
	Analysis	80		Quality and analysis	112
	Isocyanate value	80			
	Hydrolysable chlorine	80	7.	Outline of polyurethane chemistry	113
	Ionisable chlorine	81		Isocyanates	113
	Acidity	81		Isocyanate reactions with	
	Viscosity	81		hydroxyl	114
	Gas chromatography	82		Isocyanate reaction with water	115
	Storage/transportation	82		Isocyanate reaction with amines	116
	Isocyanate product characteristics	82		Isocyanate reaction with urea	116
	MDI	83		Isocyanate reaction with	
	Polymeric MDI	84		urethanes	117
	TDI	86		Isocyanate reactions with	
	NDI	86		isocyanates	118
	HDI	87		Other reactions of isocyanates	121
	IPDI	87		Polyurethane degradation reactions	123
	H ₁₂ MDI Other diisocyanates	87		Polyether polyol	123
	Alternatives to phosgene	87		Polyester polyol	125
	Attenuatives to phosgene	87		Ultra-violet radiation	125
6	Polyois	89		Physical chemistry	126
٥.	Manufacture of propylene oxide	89	0	Diorring agents	
	Chlorohydrin process	89	٥.	Blowing agents Montreal Protocol and other regulations	127
	Hydroperoxidation	91		Blowing agents	131
	Propylene oxide polyether polyols	93		Hydrochlorofluorocarbons (HCFCs	
	Anionic polymerisation with	73		Hydrofluorocarbons (HFCs)	132
	potassium hydroxide	94		Hydrocarbons (HCs)	133
	Product purification	96		Liquid carbon dioxide and other	133
	Side reactions	96		physical blowing agents	134
	Alternative catalysts	97		Chemical blowing	134
	· ·····,			511111111111111111111111111111111111111	107

Chapter		Chapter	Page
Selection criteria	135	Viscosity reducers	167
Environmental considerations	135	UV resistance	167
Feasibility	136		
Performance	136	11. Introduction to flexible foams	169
		Markets	169
9. Catalysts	137	Raw material history	169
Preparation of amine catalysts	137	Basic flexible foam chemistry	171
Preparation of organotin catalysts	139	Foam and polymer morphology	174
Reaction mechanisms	141	Cellular structure	175
Amine catalysts	141	Polymer morphology	175
Organotin catalysts	143	Functionality and performance tests	
Isocyanurate catalysts	145	for flexible foams	177
Reaction kinetics	145	Basic properties	179
Traditional experiments	147	Durability cushioning/comfort	
Model systems	147	tests	180
FTIR experiments	148	Ageing tests	187
Ion viscosity	150	Fire test methods	188
		Environmental performance	188
10. Additives	151		
Blowing agents	151	Moulded foams for automotive seating,	
Catalysts	151	sound insulation and furniture	189
Flexible foams	151	Applications	189
Rigid foams	152	Automotive seating	190
Coatings, adhesives, sealants		Sound insulation foams	192
and encapsulants	153	Moulded furniture foams	193
Surfactants	156	Raw materials and formulations	193
Structural parameters of silicone		Cold-cure foams	194
surfactants	157	Hot-cure foams	197
Flexible foams	158	Processing of flexible foams	198
Rigid foams	159	Cold-cure moulding	199
Elastomers and other applications	160	Hot-cure moulding	202
Fire retardants	160		
Flexible foams	162	13. Slabstock foams	203
Rigid foams	162	Foam technologies	203
Other applications	162	Raw materials and formulations	204
Cross-linking agents, chain-extending		Polyester foams	206
agents and their reactions	163	Conventional polyether foams	207
Other additives	163	High-resilience foams	208
Adhesion promoters	163	Processing technologies	211
Anti-static	163	Foam machinery	212
Anti-oxidants	165	Foam curing	214
Fillers	165	Carbon dioxide-assisted blowing	214
Hydrolysis	166	Variable pressure foaming	214
Lubricants	166	Batch-block	215
Anti-microbials	167	Scorch	215
Pigments	167	Post-processing of slabstock foam	216

Раче

Chapter

Page

Chanter

Inapter	rage	Cnapter	Page
14. Technical foams and applications	217	16. Appliances	245
Semi-rigid foams	217	Appliance design	246
Applications	217	Formulations and properties	250
Formulations	218	Process technology	253
Foam properties	219		
Viscoelastic foams	220	17. Construction	257
Packaging	221	Insulation materials	257
Polyurethane gels	223	Formulation technologies	258
Hydrophilic foams	223	Boardstock	259
Textile laminated polyurethane foams	224	Formulations	260
Post-treated polyurethane foams	225	Blowing agents	261
Reticulated foams	225	Mixing	262
Impregnated foams	226	Facers	262
Rebonded foams	226	Lay-down	262
Carpet backing foams	227	Conveyor	263
		Line speed – board thickness	265
15. Introduction to rigid foams	229	Cutting and stacking	265
Basic science	229	Sandwich panels	266
Chemical processes during foam		Formulations	268
formation	230	Continuous lamination	269
Physical processes during foam		Discontinuous manufacture	271
formation	230		
Formulation design for optimum		18. Other construction applications	273
processing and end properties	231	Insulated pipe	273
Blowing agents	232	Discontinuous moulding	274
Key criteria for blowing agent		Continuous moulding	277
choice	233	Continuous spray	277
Heat transfer	233	Spray insulation	278
Fundamental aspects of thermal		One-component foam (OCF)	281
conductivity	234	Water heaters	282
Radiative transfer ($\lambda_{\text{radiative}}$)	235	Other niche applications	283
Solid conduction (λ_{solid})	235	Buoyancy	283
Gaseous conduction (λ_{gas})	235	Surfboards	283
Thermal conductivity ageing	236	Aircraft propellers/windsails	283
Basic theory	236	Floral foam applications	283
Thermal conductivity ageing		Wall, soil and mine stabilisation	284
under service conditions	238	Low-density semi-structural foams	
Industry standards for thermal		High-density structural foams	284
performance	239		
Open-cell foam	239	19. Introduction to elastomers	285
Key testing methods	241	Theory of polyurethane elastomers	286
Thermal conductivity	241	Test methods	294
Compression strength	242	Standard mechanical properties	294
Dimensional stability	243	Dynamic property testing	297
Closed-cell content	243	Frictional properties	298
Water vapour transmission	244	Thermal analysis	298
		Environmental exposure testing	299

Chapter		Chapter	Page
20. Elastomers for footwear applications		23. Introduction to coatings, adhesives,	
Two-component polyurethanes		sealants and encapsulants	347
Polyester technology	303	Raw materials	349
Polyether technology	306	Isocyanates	349
Hybrid technology	307	Polyols	349
Additives	308	Other ingredients	350
Process technology for two-component		Surface interactions	350
polyurethanes	309	Reactions at surfaces and	
Machinery	309	interfaces	352
Moulds	310	Solidification and bonding	353
Mould release	310	Test methods	353
Thermoplastic polyurethanes	311	Properties of basic materials	354
		Sample preparation	358
21. Thermoplastic polyurethanes	315	Final product properties	358
Applications	316	Environmental issues and future trends	361
Automotive	316		
Engineering	317	24. Coatings	363
Footwear	318	Materials selection	364
Medical	318	Isocyanates	364
Pipe, hose and tube	319	Polyols	364
Wire and cable	320	Amines	365
Film, sheet and calendared articles	320	Solvents	365
Raw materials and properties	321	Technology of reactive coatings	366
Production	324	Two-component polyurethane	
Batch process	325	coatings	366
Band casting	325	Oven-curing or stoving systems	372
Reactive extrusion	326	One-component polyurethane	
Processing	327	coatings	374
Compounding	327	Technology of non-reactive coatings	375
Polymer blends	328	Solvent-borne lacquers	375
Powder	328	Polyurethane dispersions	375
Drying	328	Urethane oils and alkyds	377
Injection moulding	328	Radiation curing	377
Extrusion	329		
Rotational moulding	330	25. Adhesives	379
		Types of adhesive technology	379
22. Other two-component elastomers	331	Materials selection	382
Cast elastomers	331	Non-reactive polyurethane adhesives	384
Synthetic leathers	336	Solvent-borne adhesives	384
Elastomeric fibres	338	Water-borne adhesives	386
Integral skin foams	339	Hot-melt adhesives	387
Reaction injection moulding		Reactive polyurethane adhesives	388
elastomers	342	One-component adhesives	388
Polyurea elastomers	344	Two-component adhesives	391
,		Reactive hot-melt	393
		Hybrid systems	394

Ch	apter	Page	Chapter	Page
26	Wood adhesives	395	30. The use of polyurethane composites in	
	Mechanisms of adhesion	397	automotive applications	437
	Types of wood composites	399	Automotive interiors	437
	Oriented strand board (OSB)	399	Door panels	439
	Medium density fibreboard (MDF)	403	Sun-shades	440
	Engineered lumber (EL)	405	Package trays	441
	Other types of wood composites	408	Headliners	441
	•		Seatbacks	442
27.	Sealants and encapsulants	409	Load floors and floor pans	442
	Sealants	409	Automotive exteriors	442
	Applications	410	Future trends	444
	Formulations and properties of			777
	sealants	410	Appendix 1: Calculations	447
	Encapsulants	416	11	77,
	Applications	416	Appendix 2: Conversion factors	453
	Formulations and properties of		appearant ar conversion factors	700
	encapsulants	417	Appendix 3: Physical properties of	
	•		isocyanates	455
28. 1	Introduction to polyurethane		1000) 11111110	455
	composites	419	Index	457
	General properties of composites	420		431
	Design considerations when working			
		421		
	Stress analysis	421		
	Detailed design	421		
	Raw materials	422		
	Polyurethane systems	422		
	Form and types of glass fibre	422		
		423		
	Carbon fibre	424		
	Natural fibre	424		
	Processing techniques	424		
	Test procedures	424		
29. I	olyurethane composite technology	427		
		427		
		429		
	Sprayed chopped fibre	429		
	· · · · · ·	430		
		431		
		431		
		432		
		434		
	•			