MATHEMATICAL METHODS OF ENVIRONMENTAL RISK MODELING

Douglas J. Crawford-Brown

CONTENTS

Preface	ix
Chapter 1. Fields, Spaces and States	1
1.1. The Concept of Fields and States	1
1.2. Scalar, Vector and Tensor Fields	5
1.3. The Gradient, Divergence and Curl of a Field	6
1.4. Translation, Rotation and Superposition of Fields	15
Chapter 2. Probability and Statistics	27
2.1. Decisions Under Variability and Uncertainty	27
2.2. Probability, Frequency, Confidence and Likelihood	29
2.3. Long-Term Frequentist and Bayesian Conceptions	32
2.4. Histograms and Probability Density Functions	35
2.5. Special Probability Density Functions	41
2.6. Correlation	46
2.7. Parameter Estimation and Measures of Model Quality	49
2.8. Error Propagation through Models	56
Chapter 3. Systems of Differential Equations	61
3.1. A Systems View of the Environment	61
3.2. Mass/Energy Balance and Conservation Laws	66
3.3. Linear Differential Equations	69
3.4. Systems of Differential Equations	71
3.5. Applications of Bernoulli's Method	75

Chapter 4. Laplace Transforms and Coupled Differential Equations	95
4.1. Coupled Systems and Feedback	95
4.2. Transforms	97
4.3. The Laplace Transform	99
4.4. The Inverse Laplace Transform	101
4.5. Applications of Laplace Transforms	102
4.6. Some Additional Laplace Transforms	122
Chapter 5. Matrix Methods and Spectral Analysis	125
5.1. Spectra in Environmental Problems	125
5.2. Back-elimination	126
5.3. Matrices	128
5.4. Augmented Matrices and Gauss-Jordan Elimination	134
5.5. Determinants Co-Factors, Minors and Inverses	136
5.6. Applications	140
Chapter 6. Numerical Methods and Exposure-Response	147
6.1. Exposure-Response Relationships	147
6.2. Numerical Integration	152
6.3. Numerical Solutions to Differential Equations: Euler's Method	157
6.4. Numerical Solutions to Differential Equations: Runge-Kutta Methods	163
6.5. The STELLA Modeling Software	167
Chapter 7. Monte Carlo Methods	175
7.1. Decisions Under Variability and Uncertainty	175
7.2. Analytic Methods	176
7.3. Monte Carlo Methods	179
7.4. Incorporating Model Uncertainty	187
7.5. Variability Between Geographic Regions and Subpopulations	194
7.6. Nested Variability and Uncertainty Analysis	196
Index	203