International Edition ## Contents ### ▲ 1 INTRODUCTION TO MICROPROCESSORS AND MICROCOMPUTERS 1 - 1.1 The IBM and IBM-Compatible Personal Computers: Reprogrammable Microcomputers, 1 - 1.2 General Architecture of a Microcomputer System, 5 - 1.3 Evolution of the Intel Microprocessor Architecture, 8 - 1.4 Number Systems, 16 #### ▲ 2 SOFTWARE ARCHITECTURE OF THE 8088 AND 8086 MICROPROCESSORS 27 - 2.1 Microarchitecture of the 8088/8086 Microprocessor, 28 - 2.2 Software Model of the 8088/8086 Microprocessor, 30 - 2.3 Memory Address Space and Data Organization, 31 - 2.4 Data Types, 35 - 2.5 Segment Registers and Memory Segmentation, 39 - 2.6 Dedicated, Reserved, and General-Use Memory, 41 - 2.7 Instruction Pointer, 42 - 2.8 Data Registers, 43 - 2.9 Pointer and Index Registers, 44 - 2.10 Status Register, 45 - 2.11 Generating a Memory Address, 47 - 2.12 The Stack, 50 - 2.13 Input/Output Address Space, 54 #### ▲ 3 ASSEMBLY LANGUAGE PROGRAMMING 58 - 3.1 Software: The Microcomputer Program, 58 - 3.2 Assembly Language Programming Development on the PC, 65 - 3.3 The Instruction Set. 74 - 3.4 The MOV Instruction, 79 - 3.5 Addressing Modes, 82 #### ▲ 4 MACHINE LANGUAGE CODING AND THE DEBUG SOFTWARE DEVELOPMENT PROGRAM OF THE IBM PC 102 - 4.1 Converting Assembly Language Instructions to Machine Code, 103 - 4.2 Encoding a Program in Machine Code, 112 - 4.3 The PC and Its DEBUG Program, 116 - 4.4 Examining and Modifying the Contents of Memory, 123 - 4.5 Input and Output of Data, 133 - 4.6 Hexadecimal Addition and Subtraction, 135 - 4.7 Loading, Verifying, and Saving Machine Language Programs, 136 - 4.8 Assembling Instructions with the Assemble Command, 142 - 4.9 Executing Instructions and Programs with the TRACE and GO Commands, 145 - 4.10 Debugging a Program, 151 # ▲ 5 8088/8086 PROGRAMMING—INTEGER INSTRUCTIONS AND COMPUTATIONS 159 - 5.1 Data Transfer Instructions, 160 - 5.2 Arithmetic Instructions, 177 - 5.3 Logic Instructions, 207 - 5.4 Shift Instructions, 213 - 5.5 Rotate Instructions, 218 #### ▲ 6 8088/8086 PROGRAMMING—CONTROL FLOW INSTRUCTIONS AND PROGRAM STRUCTURES 229 - 6.1 Flag-Control Instructions, 229 - 6.2 Compare Instruction, 235 - 6.3 Control Flow and the Jump Instructions, 239 - 6.4 Subroutines and Subroutine-Handling Instructions, 260 - 6.5 Loops and Loop-Handling Instructions, 275 - 6.6 Strings and String-Handling Instructions, 283 #### ▲ 7 ASSEMBLY LANGUAGE PROGRAM DEVELOPMENT WITH MASM 297 - 7.1 Statement Syntax for a Source Program, 298 - 7.2 Assembler Directives, 308 X Contents | 7.3 Creating a Source File with an Editor, 3 | 7.3 | Creating | a Source | File | with | an | Editor, | 32 | |--|-----|----------|----------|------|------|----|---------|----| |--|-----|----------|----------|------|------|----|---------|----| - 7.4 Assembling and Linking Programs, 322 - 7.5 Loading and Executing a Run Module, 329 #### THE 8088 AND 8086 MICROPROCESSORS AND THEIR MEMORY AND INPUT/OUTPUT INTERFACES 335 - 8.1 8088 and 8086 Microprocessors, 336 - 8.2 Minimum-Mode and Maximum-Mode Systems, 337 - 8.3 Minimum-Mode Interface Signals, 339 - 8.4 Maximum-Mode Interface Signals, 343 - 8.5 Electrical Characteristics, 347 - 8.6 System Clock, 348 - 8.7 Bus Cycle and Time States, 350 - 8.8 Hardware Organization of the Memory Address Space, 352 - 8.9 Address Bus Status Codes, 356 - 8.10 Memory Control Signals, 356 - 8.11 Read and Write Bus Cycles, 359 - 8.12 Memory Interface Circuits, 364 - 8.13 Programmable Logic Arrays, 375 - 8.14 Types of Input/Output, 383 - 8.15 Isolated Input/Output Interface, 388 - 8.16 Input/Output Data Transfers, 391 - 8.17 Input/Output Instructions, 392 - 8.18 Input/Output Bus Cycles, 394 #### ▲ 9 MEMORY DEVICES, CIRCUITS, AND SUBSYSTEM DESIGN 404 - 9.1 Program and Data Storage Memory, 405 - 9.2 Read-Only Memory, 406 - 9.3 Random Access Read/Write Memories, 417 - 9.4 Parity, the Parity Bit, and Parity-Checker/Generator Circuit, 430 - 9.5 FLASH Memory, 433 - 9.6 Wait-State Circuitry, 448 - 9.7 8088/8086 Microcomputer System Memory Circuitry, 449 ## ▲ 10 INPUT/OUTPUT INTERFACE CIRCUITS AND LSI #### PERIPHERAL DEVICES 463 - 10.1 Core and Special-Purpose I/O Interfaces, 464 - 10.2 Byte-Wide Output Ports Using Isolated I/O, 464 - 10.3 Byte-Wide Input Ports Using Isolated I/O, 471 - 10.4 Input/Output Handshaking and a Parallel Printer Interface, 476 - 10.5 82C55A Programmable Peripheral Interface, 481 - 10.6 82C55A Implementation of Parallel Input/Output Ports, 498 - 10.7 Memory-Mapped Input/Output, 502 - 10.8 82C54 Programmable Interval Timer, 505 - 10.9 82C37A Programmable Direct Memory Access Controller, 521 Contents Xi | | | 11.6 External Hardware-Interrupt Sequence, 584 11.7 82C59A Programmable Interrupt Controller, 593 11.8 Interrupt Interface Circuits Using the 82C59A, 606 11.9 Software Interrupts, 615 11.10 Nonmaskable Interrupt, 616 11.11 Reset, 616 11.12 Internal Interrupt Functions, 619 | |----------|----|---| | ^ | 12 | HARDWARE OF THE ORIGINAL IBM PC MICROCOMPUTER 12.1 Architecture of the Original IBM PC System Processor Board, 626 12.2 System Processor Circuitry, 633 12.3 Wait-State Logic and NMI Circuitry, 637 12.4 Input/Output and Memory Chip-Select Circuitry, 641 12.5 Memory Circuitry, 645 12.6 Direct Memory Access Circuitry, 650 12.7 Timer Circuitry, 653 12.8 Input/Output Circuitry, 656 12.9 Input/Output Channel Interface, 661 | | ^ | 13 | PC BUS INTERFACING, CIRCUIT CONSTRUCTION, TESTING, AND TROUBLESHOOTING 664 13.1 PC Bus-Based Interfacing, 664 13.2 The PCµLAB Laboratory Test Unit, 667 13.3 Experimenting with the On-Board Circuitry of the PCµLAB, 674 13.4 Building, Testing, and Troubleshooting Interface Circuits, 684 13.5 Observing Microcomputer Bus Activity with a Digital Logic Analyzer, 700 | | A | 14 | REAL-MODE SOFTWARE AND HARDWARE ARCHITECTURE OF THE 80286 MICROPROCESSOR 708 14.1 80286 Microprocessor, 709 | 625 Contents 10.10 Serial Communications Interface, 536 10.12 Keyboard and Display Interface, 558 11.4 Enabling/Disabling of Interrupts, 582 MICROPROCESSORS 576 11.2 Interrupt Vector Table, 57911.3 Interrupt Instructions, 580 14.2 Internal Architecture, 70914.3 Real-Mode Software Model, 712 xii 14.4 Real-Mode Extended Instruction Set, 715 10.11 Programmable Communication Interface Controllers, 542 10.13 8279 Programmable Keyboard/Display Controller, 561 ▲ 11 INTERRUPT INTERFACE OF THE 8088 AND 8086 11.5 External Hardware-Interrupt Interface Signals, 582 11.1 Interrupt Mechanism, Types, and Priority, 577 - 14.5 Interfaces of the 80286, 722 - 14.6 82C288 Bus Controller, 727 - 14.7 System Clock, 730 - 14.8 Bus Cycle and Bus States, 732 - 14.9 Memory Interface, 735 - 14.10 Input/Output Interface, 743 - 14.11 Interrupt and Exception Processing, 747 ### ▲ 15 THE 80386, 80486, AND PENTIUM PROCESSOR FAMILIES: #### SOFTWARE ARCHITECTURE - 15.1 80386 Microprocessor Family, 760 - 15.2 Internal Architecture of the 80386DX Microprocessor, 760 - 15.3 Real-Address-Mode Software Model of the 80386DX, 764 - 15.4 Real-Address-Mode Instruction Set of the 80386DX, 767 - 15.5 Protected-Address-Mode Software Architecture of the 80386DX, 773 759 - 15.6 Descriptor and Page Table Entries of the 80386DX, 794 - 15.7 Protected-Mode System Control Instruction Set of the 80386DX, 801 - 15.8 Multitasking and Protection, 804 - 15.9 Virtual 8086 Mode, 817 - 15.10 80486 Microprocessor Family, 818 - 15.11 80486DX Floating-Point Architecture and Instructions, 830 - 15.12 Pentium Processor Family, 840 - 15.13 Multimedia Architecture and Instructions, 848 #### ▲ 16 THE 80386, 80486, AND PENTIUM PROCESSOR FAMILIES: #### HARDWARE ARCHITECTURE 862 - 16.1 80386 Microprocessor Family, 863 - 16.2 Signal Interfaces of the 80386DX, 864 - 16.3 System Clock of the 80386DX, 874 - 16.4 80386DX Bus States and Pipelined and Nonpipelined Bus Cycles, 875 - 16.5 Memory Organization and Interface Circuits, 883 - 16.6 Input/Output Interface Circuits and Bus Cycles, 891 - 16.7 Interrupt and Exception Processing, 901 - 16.8 80486SX and 80486DX Microprocessors, 914 - 16.9 Other 80486 Family Microprocessors—80486DX2 AND 80486DX4, 933 - 16.10 Pentium Microprocessor Family, 936 - 16.11 Pentium Pro Processor and Pentium Processor with MMX Technology, 952 - 16.12 Pentium II Processor, Celeron Processor, and Pentium II Xeon Processor, 956 - 16.13 Pentium III Processor and Pentium IV Processor, 959 #### **BIBLIOGRAPHY 965** #### ANSWERS TO SELECTED ASSIGNMENTS 967 #### INDEX 1005 Contents XIII