

Contents

PT	erace		X1
De	dicatio	on	xiii
1	Introd	luction	1
	1.1	Qualitative, single gene differences	2
		What are quantitative traits?	4
		Who studies quantitative traits?	6
		Why are quantitative traits important?	8
	1.5	What do we need to know about quantitative traits?	10
		Historical development of quantitative genetics	13
	Sumn		16
	Refer	rences	16
	Furth	ner reading	17
2	Basic	generations – means	18
	2.1	Single gene model with additive and dominance	
		effects	19
•	2.2	Two gene model with additive and dominance effects	21
	2.3	Multiple gene model with additive and dominance	
		effects	22
	2.4	Extension to other generations	25
	2.5	Relationships between generation means	27
	2.6	Estimating genetical parameters	30
	2.7	Interpretation: heterosis and potence ratio	33
	Sumr	nary	36
1	Refer	rences	36
3	Basic	generations – variances	38
	3.1	Variation in the non-segregating generations	38
•	3.2	Environmental variation	39
1	3.3	Estimating environmental variance	41
	3.4	Variation in the segregating generations	42
	3.5	Estimation of genetical components	45

	Heritability, h^2	48
3.7	Relationships between [a] and V_A^* , and [d] and V_D^*	49
	Dominance ratio	50
3.9	Variances and means	51
	Conclusions from the analysis of basic generations	51
Sum	mary	51
	rences	52
Furt	her reading	52
4 Selfin	ng and full-sib mating	53
4.1	Selfing: F ₃ families	54
4.2		57
4.3		61
4.4		63
4.5		65
4.6		70
4.7		72
4.8	Estimation of variance components by weighted	, -
	least squares	73
4.9	Unequal family sizes	74
	mary	75
Refe	rences	75
5 Half	sib mating designs	77
5.1	The North Carolina Experiment I: NCI	77
5.2	The North Carolina Experiment II: NCII	82
5.3	General and specific combining ability	84
5.4	Multiple NCIIs	85
5.5	The North Carolina Experiment III: NCIII	86
5.6	The Triple Test Cross: TTC	92
5.7	The diallel cross	95
5.8	HS designs using inbred lines from an F ₂ as parents	97
Sum	mary	98
Refe	rences	99
6 Gene	s, genetic markers and maps	101
6.1		102
6.2	Structural and regulatory genes	102
6.3		103
6.4	Molecular genetic markers	107
6.5	Chiasmata, crossing over and genetic exchange	111
6.6	Chiasma frequency and recombination frequency	117
	Estimation of recombination frequency	120
6.8	Mapping functions	127
6.9	Segregation distortion	130

	-		
	Sumn		131
	Refer		132
	Furth	er reading	133
7	Gene	counting and location	133
		Reasons for locating QTL	133
	7.2	Background to methodology	134
		QTL and marker loci in segregating generations	137
		Handling more than one QTL on a chromosome	151
		Biometrical methods of gene counting	156
		General conclusions on QTL counting and locating	160
	Sumn	nary	162
	Refer	-	162
	Furth	er reading	164
R	Degig	ner chromosomes	165
•	8.1		165
		Locating a QTL within the substituted region	168
		Detecting substitution effects	170
		Manipulating whole chromosomes	172
		Chromosome substitution methods in different species	
		Use of chromosome substitution lines	182
	Sumn	· ·	184
	Refer		184
Q	Popul	etions	186
Ĩ	9.1		186
		Solutions	187
. •	9.3		189
	9.4		192
÷	9.5		194
ç		Heritabilities of human traits	197
	9.7		198
3	9.8	Diallel crosses	200
٠.	9.9	Inbreeding in a population	201
٠	Sumr		203
	Refer	rences	204
ı	The	onsequences of linkage	205
		Genetic variation with linkage	205
	10.1		208
	10.2		210
	10.3		212
,	10.4		212
, i	10.5	Tests of linkage	213
	10.7	Sex linkage	215
	10.7	ANY WITHINGA	213

	10.8	Basic generations of single crosses	216
	10.9	Full-sib families	219
		Half-sib designs	220
	Sumn	nary	222
	Refer	ences	223
11	Epista	nsis	224
	11.1		225
	11.2	Relationship with classical epistasis	226
	11.3	What is parameter m?	228
		The effects of association and dispersion on epistasis	228
	11.5	Deriving the expectations of generation means	231
	11.6	Estimates and tests of significance	232
	11.7	Determining the type of epistasis for a multigene	
		case	234
	11.8	Epistasis and scaling tests	234
	11.9		235
	11.10	Epistasis and variances	236
	Sumn		239
	Refer	ences	240
12	Genotype by environment interaction 24		
	12.1		241
	12.2	Tests of $G \times E$	244
	12.3	Macro-environmental variables	245
	12.4	$G \times E$ with many lines	251
	12.5	Interpretation of G × E analysis	252
	12.6	Predictions in the presence of $G \times E$	254
	12.7	Conclusions from the genetic analysis of G × E	255
	12.8	Selection in heterogeneous environments	257
	12.9	Other methods of analysis	259
		$G \times E$ – stability versus flexibility	262
	Summ		263
	Refere	ences	263
	Furth	er reading	265
13	Mater	nal effects and non-diploids	266
	13.1	Maternal effects	266
	13.2	Models for generation means	267
	13.3	Maternal effects and scaling tests	269
	13.4	Generation variances	272
	13.5	Maternal effects in FS and HS designs	273
	13.6	Haploids and polyploids	274
		Basic generations with haploids	274
	13.8	Multiple mating designs with haploids	277

	13.9	Basic generations with polyploids	278
		Multiple mating designs with polyploids	282
	Sumn		283
	Refere	ences	- 283
14	Согте	lated and threshold characters	285
	14.1	Correlations between characters	285
	14.2	Environmental correlations	287
		Genetic correlations	288
		Genetic covariation and design of experiment	29 1
		Causes of covariation	292
		General conclusions about correlations	294
		Threshold traits	294
	14.8	Handling threshold traits	296
	14.9	Two or more thresholds	298
	Sumn	nary	300
	Refer	ences	300
	Furth	er reading	301
15	Applic	cations	302
		Choice of breeding objective	302
		The causes of heterosis	304
	15.3	Predicting the breeding potential of crosses	308
	15.4	Effects of failed assumptions on predictions of	
		RILsand SCHs	314
	15.5	Predicting the response to selection	315
		Correlated response to selection	321
		Indirect selection	322
		Multi-trait selection	323
		Marker-based selection	324
		Genetic architecture of populations	327
		Human populations	329
	Summary		332
	Refer	ences	333
	Furth	er reading	334
16		imental design	335
		Replication	335
		Power of experiments	339
		Power of biometrical experiments based on anova	342
		Reliability of the additive genetic variance	346
		Data analysis	347
	Sumn	nary	348
	Refer		349
	Furth	er reading	349

Appendix A	Precision of h_n^2 with FS families	350
Appendix B	Precision of h_n^2 with HS families	351
Appendix C	Statistical tables; F, χ^2 , t	352
Appendix D	Normal deviate and intensity of selection (i)	354
Appendix E	Area under the normal curve	355
Appendix F	The weighted least squares procedure	356
Symbols		360
Problems		
Answers to problems		370
Index	·	379