
# INTRODUCTION TO GENETIC ANALYSIS

Eighth Edition



GRIFFITHS • WESSLER • LEWONTIN GELBART • SUZUKI • MILLER

# Contents

#### Preface xi

| Late 1 |           |      | 4.5  | A       |     | - 4 |
|--------|-----------|------|------|---------|-----|-----|
|        | Genetics  | and  | the  | ()rgar  | usm | - 1 |
| -      | COLICEICS | anna | LIIL | UI JULI |     | -   |

- 1.1 Genes as determinants of the inherent properties of species 3
- 1.2 Genetic variation 8
- 1.3 Methodologies used in genetics 11
- 1.4 Model organisms 13
- 1.5 Genes, the environment, and the organism 16

#### Part I: TRANSMISSION GENETIC ANALYSIS

#### 2 Patterns of Inheritance 27

- 2.1 Autosomal inheritance 29
- 2.2 Sex chromosomes and sex-linked inheritance 48
- 2.3 Cytoplasmic inheritance 55

#### 3 The Chromosomal Basis of Inheritance 73

- 3.1 Historical development of the chromosome theory 75
- 3.2 The nature of chromosomes 80
- 3.3 Mitosis and meiosis 90
- 3.4 Chromosome behavior and inheritance patterns in eukaryotes 96
- 3.5 Organelle chromosomes 103

### 4 Eukaryote Chromosome Mapping by Recombination 115

- 4.1 The discovery of the inheritance patterns of linked genes 117
- 4.2 Recombination 121
- 4.3 Linkage maps 124
- 4.4 Using the chi-square test in linkage analysis 131
- 4.5 Using Lod scores to assess linkage in human pedigrees 133
- 4.6 Accounting for unseen multiple crossovers 134

# 5 The Genetics of Bacteria and Their Viruses 151

- 5.1 Working with microorganisms 153
- 5.2 Bacterial conjugation 155
- 5.3 Bacterial transformation 166
- 5.4 Bacteriophage genetics 166
- 5.5 Transduction 170
- 5.6 Physical maps versus linkage maps 174




Figure 1-15d



Page 100

# Part II: THE RELATIONSHIP OF DNA AND PHENOTYPE

- 6 From Gene to Phenotype 185
- 6.1 Genes and gene products 187
- 6.2 Interactions between the alleles of one gene 192
- 6.3 Interacting genes and proteins 197
- 6.4 Applications of chi-square ( $\chi^2$ ) test to gene interaction ratios 209
- 7 DNA: Structure and Replication 227
- 7.1 DNA: the genetic material 229
- 7.2 The DNA structure 231
- 7.3 Semiconservative replication 237
- 7.4 Overview of DNA replication 240
- 7.5 The replisome: a remarkable replication machine 242
- 7.6 Assembling the replisome: replication initiation 244
- 7.7 Telomeres and telomerase: replication termination 247
- 8 RNA: Transcription and Processing 255
- 8.1 RNA 257
- 8.2 Transcription 259
- 8.3 Transcription in eukaryotes 264
- 9 Proteins and Their Synthesis 273
- 9.1 Protein structure 275
- 9.2 Colinearity of gene and protein 277
- 9.3 The genetic code 278
- 9.4 tRNA: the adapter 282
- 9.5 Ribosomes 285
- 9.6 Posttranslational events 291
- 10 Regulation of Gene Transcription 301
- 10.1 Prokaryotic gene regulation 303
- 10.2 Discovery of the *lac* system of negative control 307
- 10.3 Catabolite repression of the *lac* operon: positive control 312
- 10.4 Dual positive and negative control: the arabinose operon 315
- 10.5 Metabolic pathways 316
- 10.6 Transcriptional regulation in eukaryotes 316
- 10.7 Chromatin's role in eukaryotic gene regulation 322

# Part III: GENOME STRUCTURE AND ENGINEERING

- 11 Gene Isolation and Manipulation 341
- 11.1 Generating recombinant molecules 343
- 11.2 DNA amplification in vitro: the polymerase chain reaction 360

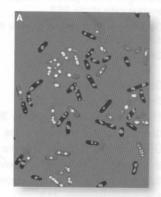



Figure 5-9a

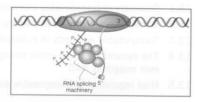



Figure 8-13b



Figure 10-30

- 11.3 Zeroing in on the gene for alkaptonuria: another case study 362
- 11.4 Detecting human disease alleles: molecular genetic diagnostics 364
- 11.5 Genetic engineering 366

#### 12 Genomics 389

- 12.1 The nature of genomics 391
- 12.2 The sequence map of a genome 392
- 12.3 Creating genomic sequence maps 394
- 12.4 Using genomic sequence to find a specific gene 398
- 12.5 Bioinformatics: meaning from genomic sequence 406
- 12.6 Take-home lessons from the genomes 410
- 12.7 Functional genomics 413

#### 13 The Dynamic Genome: Transposable Elements 423

- 13.1 Discovery of transposable elements in maize 425
- 13.2 Transposable elements in prokaryotes 429
- 13.3 Transposable elements in eukaryotes 434
- 13.4 The dynamic genome: more transposable elements than ever imagined 440
- 13.5 Host regulation of transposable elements 445

#### Part IV: THE NATURE OF HERITABLE CHANGE

- 14 Mutation, Repair, and Recombination 451
- 14.1 Point mutations 453
- 14.2 Spontaneous mutation 461
- 14.3 Biological repair mechanisms 468
- 14.4 The mechanism of meiotic crossing-over 473

# 15 Large-Scale Chromosomal Changes 481

- 15.1 Changes in chromosome number 483
- 15.2 Changes in chromosome structure 496
- 15.3 Overall incidence of human chromosome mutations 506

#### Part V: FROM GENES TO PROCESSES

- 16 Dissection of Gene Function 521
- 16.1 Forward genetics 523
- 16.2 Reverse genetics 530
- 16.3 Analysis of recovered mutations 535
- 16.4 Broader applications of functional dissection 537

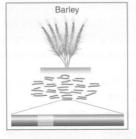



Figure 13-25



Figure 16-19



Figure 16-24

# 17 Genetic Regulation of Cell Number: Normal and Cancer Cells 545

- 17.1 The balance between cell loss and proliferation 547
- 17.2 The cell-proliferation machinery of the cell cycle 548
- 17.3 The machinery of programmed cell death 552
- 17.4 Extracellular signals 553
- 17.5 Cancer: the genetics of aberrant cell number regulation 558
- 17.6 Applying genomic approaches to cancer research, diagnosis, and therapies 566

# 18 The Genetic Basis of Development 575

- 18.1 The logic of building the body plan 577
- 18.2 Binary fate decisions: the germ line versus the soma 578
- 18.3 Forming complex pattern: the logic of the decision-making process 582
- 18.4 Forming complex pattern: establishing positional information 583
- 18.5 Forming complex pattern: utilizing positional information to establish cell fates 591
- 18.6 Refining the pattern 597
- 18.7 The many parallels in vertebrate and insect pattern formation 600
- 18.8 The genetics of sex determination in humans 602
- 18.9 Do the lessons of animal development apply to plants? 603
- 18.10 Genomic approaches to understanding pattern formation 605

# Part VI: THE IMPACT OF GENETIC VARIATION

# 19 Population Genetics 611

- 19.1 Variation and its modulation 612
- 19.2 Effect of sexual reproduction on variation 621
- 19.3 Sources of variation 626
- 19.4 Selection 629
- 19.5 Balanced polymorphism 634
- 19.6 Random events 636

# 20 Quantitative Genetics 643

- 20.1 Genes and quantitative traits 645
- 20.2 Some basic statistical notions 647
- 20.3 Genotypes and phenotypic distribution 649
- 20.4 Norm of reaction and phenotypic distribution 651
- 20.5 Determining norms of reaction 652
- 20.6 The heritability of a quantitative character 654
- 20.7 Quantifying heritability 656
- 20.8 Locating genes 664 Statistical appendix 667

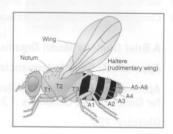



Figure 18-24a



Figure 20-1

| 21 Evolutionary | Genetics | 679 |
|-----------------|----------|-----|
|-----------------|----------|-----|

- 21.1 A synthesis of forces: variation and divergence of populations 682
- 21.2 Multiple adaptive peaks 685
- 21.3 Heritability of variation 687
- 21.4 Observed variation within and between populations 688
- 21.5 The process of speciation 689
- 21.6 Origin of new genes 691
- 21.7 Rate of molecular evolution 695
- 21.8 Genetic evidence of common ancestry in evolution 696
- 21.9 Comparative genomics and proteomics 698

A Brief Guide to Model Organisms 707

Appendix A: Genetic Nomenclature 723

Appendix B: Bioinformatics Resources for Genetics and Genomics 724

Glossary 727

Answers to Selected Problems 749

Index 763