

STRUCTURE AND DYNAMICS OF MACROMOLECULES: ABSORPTION AND FLUORESCENCE STUDIES

J.R. Albani

Contents

Preface	v
1. Light absorption by a molecule	
1. Jablonski diagram or diagram of electronic transitions	1
2. Singlet and triplet states	
3. Forbidden and non forbidden transitions	7
4. Reading the Jablonski diagram	2 7 7
5. Chemical bonds	8
5a. Atomic and molecular orbitals	8
5b. The coordinated bond	9
6. Absorption spectroscopy	11
6a. Origin and properties of the absorption spectra	11
6b. Beer-Lambert-Bouguer law	14
6c. Determination of the molar extinction coefficient of protein	ານ 18
6d. Effect of high optical densities on the Beer-Lambert-Bougi	uer law 21
6e. Effect of the environment on the absorption spectra	21
6f. Absorption spectroscopy and electron transfer mechanism	
in proteins	27
6g. Second – derivative absorption spectroscopy	40
6g1. Theory	40
6g2. Binding of progesterone to α _l -acid glycoprotein	47
2. Fluorescence : Principles and observables	
1. Introduction	55
2. Fluorescence properties	58
2a. Stokes shift	58
2b. Relation between emission spectrum and excitation wavele	ngth 60
2c. Relation between the fluorescence intensity and the optical	!
density	62
2d. Fluorescence excitation spectrum	66
2e. The mirror-image rule	69
2f. Fluorescence lifetime	70
2f1. Definition of the fluorescence lifetime	70
2f2. Mean fluorescence lifetime	72
2f3. Fluorescence lifetime measurement	73

viii Contents

	2f4. Time Correlated Single Photon counting	79
	2f5. The Strobe technique	84
	2f6. Excitation with continuous light: the phase and demodulation method	85
	Principles	85
	Multifrequency and cross-correlation	88
	2g. Fluorescence quantum yield	91
	2h. Fluorescence and light diffusion	98
3.	Fluorophores: Descriptions and properties	
1.	Introduction	99
2.	Types of fluorophores	99
	2a. Intrinsic fluorophores	99
	2a1. The aromatic amino acids	99
	2a2. The Co-factors	111
	2b. Extrinsinc fluorophores	113
	2b1. Fluorescein and rhodamine	113
	2b2. Naphthalene sulfonate	114
	2b3. Nucleic bases	123
	2b4. Ions detectors	124
	2b5. Carbohydrates fluorescent probes	127
	2b6. Oxydation of tryptophan residues with N-bromosuccinimide	129
_	2b7. Nitration of tyrosine residues with tetranitromethane (TNM)	131
3.	Effect of the environment on the fluorescence observables	134
	3a. Polarity effect on the quantum yield and the position of the	
	emission maximum	134
	3b. Effect of the viscosity on the fluorescence emission spectrum	136
	3c. Effect of the environment on the fluorescence lifetime	139
	3d. Relation between fluorescence and a specific sequence	
	in a protein	140
4.	Fluorescence quenching	
1.	Introduction	141
2.	Collisional quenching: the Stern-Volmer relation	141
3.	The different types of dynamic quenching	145
4.	Static quenching	158
	4a. Theory	158
	4b. Cytochrome c - cytochrome b ₂ core interaction	161
	4c. Cytochrome b ₂ core - flavodehydrogenase interaction	162
	4d. Determination of drug binding to α_l – acid glycoprotein	164
	Comparison between dynamics and static quenching	166
	Combination of dynamic and static quenching	169
	Thermal intensity quenching	171
8.	Photoquenching	191

Contents ix

5.	Fluorescence polarization	
1.	Aim and definition	193
2.	Principles of polarization or of photoselection	194
3.	Absorption transitions and excitation polarization spectrum	197
	Fluorescence depolarization	199
	4a. Principles and applications	199
	4b. Measurements of rotational correlation time of tyrosine	
	in small peptides	206
	4b1. Fluorescence lifetime	206
	4b2. Fluorescence intensity quenching of tyrosine residues by iodide	206
	4b3. Quenching emission anisotropy	208
	4c. DNA-Protein interaction	209
5.	Fluorescence anisotropy decay time	211
	Depolarization and energy transfer	214
6.	Förster energy transfer	
1.	Principles	217
2.	Energy transfer parameters	224
	Relation between energy transfer and static quenching	227
7.	Origin of protein fluorescence	237
8.	Description of the structure and dynamics of α_1 - acid glycoprotein by	
	fluorescence studies	
1.	Introduction	261
	Methods	266
3.	Fluorescence properties of TNS bound to sialylated α ₁ -acid glycoprotein	267
	3a. Binding parameters	267
	3b. Fluorescence lifetime	270
	3c. Dynamics of TNS bound to α _l -acid glycoprotein	270
4.	Fluorescence properties of calcofluor bound to α_1 -acid glycoprotein	274
	4a. Fluorescence parameters of calcofluor bound to α _l -acid glycoprotein	274
	4b. Binding parameters	276
	4c. Nature of the interaction of calcofluor with α_l -acid glycoprotein and HSA	277
	4d. Titration of carbohydrate residues with calcofluor	280
	4e. Fluorescence lifetime of calcofluor bound to α _j -acid glycoprotein	285
	4f. Binding parameters of calcofluor white - α _i -acid glycoprotein	
	by following the fluorescence lifetime of calcofluor	287
	4g. Dynamics of calcofluor bound to α ₁ -acid glycoprotein at equimolar	
	concentrations	288
	4g1. Dynamics of calcofluor bound to sialylated \alpha_1-acid glycoprotein	288
	4g2. Dynamics of Calcofluor bound to asialylated α_l - acid glycoprotein	289

x Contents

	4h. Dynamics of calcofluor bound to α _I -acid glycoprotein at excess	
	concentration of calcofluor	29
5.	Fluorescence properties of the Trp residues in α_1 -acid glycoprotein	293
	5a. Fluorescence spectral properties	293
	5b. Effect of high calcofluor concentration on the local structure of	
	α _l -acid glycoprotein	296
	5c. Deconvolution of the emission spectra obtained at low and high	
	concentrations of calcofluor into different components	297
	5c1. Analysis as a sum of Gaussian bands	291
	5c2. The Ln-normal analysis	299
6.	Förster energy transfer experiments from Trp residues to calcofluor white	305
7.	Relation between the secondary structure of carbohydrate residues of α_1 -acid	
	glycoprotein and the fluorescence of the Trp residues of the protein	309
8.	Effect of the secondary structure of carbohydrate residues of α ₁ -acid	
	glycoprotein on the local dynamics of the protein	313
	8a. Fluorescence emission intensity of α _l -acid glycoprotein	
	as a function of temperature	313
	8b. Fluorescence emission anisotropy of α ₁ -acid glycoprotein	
	as a function of temperature	315
9.	Tertiary structure of quacid glycoprotein: first model describing the	
	presence of a pocket	319
10	Are there any alternative fluorescence methods other than the QREA	
	or the Weber's method to put into evidence the presence of a pocket	
	within α ₁ -acid glycoprotein?	323
11	. Experiments giving proofs of the presence of a pocket within	
	α ₁ -acid glycoprotein	324
	11a. Binding of progesterone to α ₁ -acid glycoprotein	324
	11b. Binding of hemin to α ₁ - acid glycoprotein	327
12	. Homology modeling of α ₁ - acid glycoprotein	321
13	. Dynamics of Trp residues in crystals of human α ₁ - acid glycoprotein	332
	13a. Introduction	332
	13b. Protein Preparation	332
	13c. Fluorescence Excitation and Emission Spectra	334
	13d. Dynamics of the Microenvironments of the hydrophobic Trp Residues	336
14	Structural studies of human α ₁ -acid glycoprotein followed by X-rays	
	scattering and transmission electron microscopy.	339
	14a. Small angle diffraction studies (SAXS)	339
	14b. Wide angle diffraction studies (WAXS)	34
	14b1. Carbohydrate residues studies	341
	14c. Electron microscopy studies	342
9.	Structure and dynamics of hemoglobin subunits and of myoglobin	
1.	Introduction	345
2.		340
~	P THURBOO OF ALP ADDIQUES IN IRCHIDENDOM AND IN HE SHOUTHES	.,41

Contents

хi

3.	Properties of protoporphyrin IX in different solvents and in apomyoglobin	349
	3a. Chemical structure of the porphyrins	349
	3b. Spectral properties of proporphyrin IX in different solvents	351
	3c. Spectral properties of protoporphyrin IX bound to apomyoglobin (Mb ^{desFe})	357
4.	Dynamics of protoporphyrin IX embedded in the heme pocket	359
	4a. Protein rotational correlation time	359
	4b. Activation energy of the porphyrin motions in the heme-pocket	359
	4c. Residual internal motions of porphyrin	360
	4d. Effect of metal on the porphyrin dynamics	362
5.	Dynamics of the protein matrix and the heme pocket	
6.	Significance of the upward curvature	364
7.	Effect of sucrose on the bimolecular diffusion constant	367 370
10.	Fluorescence fingerprints of animal and vegetal species and / or varieties	
1.	Fluorescence fingerprints of Eisenia fetida and Eisenia andrei	373
	la. Introduction	373
	1b. Results	374
2.	Structural characterization of varieties of crops among a species and of	
	genetically modified organisms: a fluorescence study	377
	2a. Pioneering work	377
	2b. Structural characterization of crops	379
	•	
kei	ferences	387
nd	ex	400