CONSERVATION EQUATIONS AND MODELING OF CHEMICAL AND BIOCHEMICAL PROCESSES

Said S. E. H. Elnashaie Parag Garhyan

Contents

	Prefa	ce		iii
1	Syste	m Theor	y and Chemical/Biochemical Engineering Systems	1
	1.1	System	Theory	1
		1.1.1	What Is a System?	1
		1.1.2	Boundaries of System	2
	1.2	Steady	State, Unsteady State, and Thermodynamic	
		Equilib	rium	3
		^	The State of the System	3
			Input Variables	3
			Initial Conditions	4
	1.3	Modeli	ng of Systems	4
			Elementary Procedure for Model Building	5
			Solution of the Model Equations	6
		1.3.3	Model Verification	6
	1.4	Fundar	mental Laws Governing the Processes in Terms	
			State Variables	7
			Continuity Equations for Open Systems	7
			Diffusion of Mass (Transport Law)	7
			` 1 ,	

xiv Contents

		1.4.5 Energy Equation (Conservation of Energy, 1 list	
		Law of Thermodynamics for an Open System)	8
		1.4.4 Equations of Motion	9
		1.4.5 Equations of State	11
		1.4.6 Rate of Reaction	12
		1.4.7 Thermodynamic Equilibrium	13
	1.5	Different Classifications of Physical Models	17
	1.6	The Story of Chemical Engineering in Relation to	
		System Theory and Mathematical Modeling	19
	1.7	The Present Status of Chemical Industry and	
		Undergraduate Chemical Engineering Education	20
	1.8	System Theory and the Mathematical Modeling	
		Approach Used in This Book	21
		1.8.1 Systems and Mathematical Models	22
		1.8.2 Mathematical Model Building: General Concepts	25
		1.8.3 Outline of the Procedure for Model Building	26
	1.9	Modeling and Simulation in Chemical Engineering	28
	1.10	Amundson Report and the Need for Modern Chemical	
		Engineering Education	30
	1.11	System Theory and Mathematical Modeling as Tools for	
		More Efficient Undergraduate Chemical Engineering	
		Education	31
	1.12	Summary of the Main Topics in this Chapter	33
		1.12.1 Different Types of Systems and Their Main	
		Characteristics	34
		1.12.2 What Are Models and What Is the Difference	
		Between Models and Design Equations?	36
		1.12.3 Summary of Numerical and Analytical Solution	
		Techniques for Different Types of Model	37
		References	40
		Problem	40
	B # - 4 -	and Factor Polonoss	41
2	Mate	rial and Energy Balances	
	2.1	Material and Energy Balances	41
		2.1.1 A Simple, Systematic, and Generalized Approach	41
		2.1.2 Development of Material Balance Relations	42
	2.2	Single and Multiple Reactions: Conversion, Yield, and	
		Selectivity	52
		2.2.1 Single Reactions	53
		2.2.2 Degrees-of-Freedom Analysis	56

Contents xv

	2.2.3	Relations Among Rate of Reaction, Conversion,	
		and Yield	60
2.3	General	lized Material Balance	69
	2.3.1	Sign Convention for the Stoichiometric Numbers	70
	2.3.2	The Limiting Component	74
	2.3.3	Reactions with Different Stoichiometric Numbers	
		for the Reactants	75
	2.3.4	Multiple Reactions and the Special Case of	
		Single Reaction	82
	2.3.5	The Algebra of Multiple Reactions (Linear	
		Dependence and Linear Independence of Multiple	
		Reactions)	90
	2.3.6	The Most General Mass Balance Equation	
		(Multiple-Input, Multiple-Output, and Multiple	
		Reactions)	90
2.4	Solved	Problems for Mass Balance	93
2.5	Heat E	ffects	104
	2.5.1	Heats of Reactions	105
	2.5.2	Effects of Temperature, Pressure, and Phases on	
		Heat of Reaction	108
	2.5.3	Heats of Formation and Heats of Reaction	111
	2.5.4	Heats of Combustion and Heats of Reaction	112
2.6	Overall	Heat Balance with Single and Multiple Chemical	
	Reaction	ons	112
	2.6.1	Heat Balance for Multiple Reactions and the	
		Special Case of a Single Reaction	115
	2.6.2	The Most General Heat Balance Equation	
		(for Multiple Reactions and Multiple-Input and	
		Multiple-Output System Reactor with Multiple	
		Reactions)	117
2.7	Solved	Problems for Energy Balance	117
	Refere	nce	148
	Proble	ms	148
Math	ıematical	Modeling (I): Homogeneous Lumped Systems	167
3.1	Mathe	matical Modeling of Homogeneous Lumped	
5.1	Process		167
	3.1.1	Basic Concepts for the Mathematical Modeling	107
	2.1.1	of Processes	167
	3.1.2		168

3

xvi Contents

3.1.3 What Are Mathematical Models and Why Do

		We Need Them?	169
		3.1.4 Empirical (Black Box) and Physical	
		(Mathematical) Models	170
	3.2	Mathematical Model Building: General Concepts	174
		3.2.1 Classification of Models	176
		3.2.2 Difference Between Modeling and Simulation	178
		3.2.3 Design Equations and Mathematical Models	179
		3.2.4 Simplified Pseudohomogeneous Models Versus	
		Rigorous Heterogeneous Models	179
		3.2.5 Steady-State Models Versus Dynamic Models	181
		3.2.6 A Simple Feedback Control Example	184
	3.3	Generic and Customized Models	186
		3.3.1 Practical Uses of Different Types of Models	188
		3.3.2 Steady-State Models	188
		3.3.3 Dynamic Models	189
		3.3.4 Measures for the Reliability of Models and	
		Model Verification	190
	3.4	Economic Benefits of Using High-Fidelity Customized	
		Models	192
		3.4.1 Design and Operation	193
		3.4.2 Control	196
	3.5	Incorporation of Rigorous Models into Flowsheet	
		Simulators and Putting Mathematical Models into	
		User-Friendly Software Packages	197
	3.6	From Material and Energy Balances to Steady-State	
		Design Equations (Steady-State Mathematical Models)	201
		3.6.1 Generalized Mass Balance Equation	201
		3.6.2 Isothermal Reactors (Temperature Is Constant)	205
		3.6.3 Nonisothermal Reactors	222
	3.7	Simple Examples for the General Equations	229
	3.8	Modeling of Biochemical Systems	235
		3.8.1 Modeling of Enzyme Systems	235
		3.8.2 Modeling of Microbial Systems	247
		References	253 255
		Problems	253
1	Math	nematical Modeling (II): Homogeneous Distributed	
		ms and Unsteady-State Behavior	265
	4.1	Modeling of Distributed Systems	266
		4.1.1 Isothermal Distributed Systems	266

Contents	xvii

		4.1.2	•	268
		4.1.3	,	271
	4.2	The Un	steady-State Terms in Homogeneous and	
			geneous Systems	272
		4.2.1	Lumped Systems	273
		4.2.2	Distributed Systems	275
		4.2.3	Nonisothermal Systems	278
	4.3	The Ax	ial Dispersion Model	279
		4.3.1	Formulation and Solution Strategy for the	
			Axial Dispersion Model	279
		4.3.2	Solution of the Two-Point Boundary-Value	
			Differential Equations and Numerical	
			Instability Problems	299
		Proble	ms	308
5	Proce	ess Dyna	mics and Control	317
	5.1	-	s Forms of Process Dynamic Models	317
	5.2		lation of Process Dynamic Models	318
	5.2	5.2.1	The General Conservation Principles	318
		5.2.2		319
		5.2.3		320
		5.2.4		323
		5.2.5	*	324
		5.2.6		324
		5.2.7		326
		5.2.8	•	328
		5.2.9		329
		5.2.10	SISO and MIMO Discrete Time Models	330
	5.3		pace and Transfer Domain Models	330
	5.4		ictory Process Control Concepts	335
		5.4.1	·	335
		5.4.2		337
		5,4.3	· -	340
		5.4.4		
			Configurations	343
		5.4.5	Overview of Control Systems Design	346
	5.5		s Dynamics and Mathematical Tools	361
		5.5.1	Tools of Dynamic Models	361
	5.6		place Transformation	363
		5.6.1		363
		5.6.2		364
			•	

xviii	Contents
-------	----------

		5.6.3 The Transform of Derivatives	364
		5.6.4 Shift Properties of the Laplace Transform	366
		5.6.5 The Initial- and Final-Value Theorems	368
		5.6.6 Use of Laplace Transformation for the Solution	
		of Differential Equations	369
		5.6.7 Main Process Control Applications of Laplace	
		and Inverse Transformations	372
	5.7	Characteristics of Ideal Forcing Functions	372
	5.8	Basic Principles of Block Diagrams, Control Loops, and	
		Types of Classical Control	379
	5.9	Linearization	397
	5.10	Second-Order Systems	398
		5.10.1 Overdamped, Critically Damped, and	
		Underdamped Responses	400
		5.10.2 Some Details Regarding the Underdamped	
		Response	400
	5.11	Components of Feedback Control Loops	402
	5.12	Block Diagram Algebra	403
		5.12.1 Typical Feedback Control Loop and the	
		Transfer Functions	403
		5.12.2 Algebraic Manipulation of the Loop Transfer	
		Functions	405
		5.12.3 Block Diagram and Transfer Functions	407
	5.13	Some Techniques for Choosing the Controller Settings	410
		5.13.1 Choosing the Controller Settings	410
		5.13.2 Criteria for Choosing the Controller Settings	
		from the Time Response	412
		5.13.3 Cohen and Coon Process Reaction Curve	•
		Method	413
		Solved Examples	415
		Problems	426
6	Hete	rogeneous Systems	433
-	6.1	Material Balance for Heterogeneous Systems	434
	0.1	6.1.1 Generalized Mass Balance Equations	434
		6.1.2 Two-Phase Systems	435
		6.1.3 The Equilibrium Case	437
		6.1.4 Stage Efficiency	438
		6.1.5 Generalized Mass Balance for Two-Phase	T.20
		Systems	439
		Бузкинь	137

Contents xix

	6.2	Design Equations (Steady-State Models) for Isothermal,	
		Heterogeneous Lumped Systems	441
	6.3	Design Equations (Steady-State Models) for Isothermal,	
		Distributed Heterogeneous Systems	444
	6.4	Nonisothermal Heterogeneous Systems	447
		6.4.1 Lumped Heterogeneous Systems	448
		6.4.2 Distributed Systems	451
		6.4.3 Dynamic Terms for Heterogeneous Systems	452
	6.5	Examples of Heterogeneous Systems	453
		6.5.1 Absorption Column (High-Dimensional Lumped,	
		Steady-State, and Equilibrium Stages System)	453
		6.5.2 Packed-Bed Absorption Tower	461
		6.5.3 Diffusion and Reaction in a Porous Structure	
		(Porous Catalyst Pellet)	464
	6.6	Dynamic Cases	470
		6.6.1 The Multitray Absorption Tower	470
		6.6.2 Dynamic Model for the Catalyst Pellet	471
	6.7	Mathematical Modeling and Simulation of	
		Fluidized-Bed Reactors	473
		6.7.1 Advantages of Freely Bubbling Fluidized Beds	474
		6.7.2 Disadvantages of Fluidized Beds	475
		6.7.3 Mathematical Formulation (Steady State)	475
	6.8	Unsteady-State Behavior of Heterogeneous Systems:	
		Application to Fluidized-Bed Catalytic Reactors	482
	6.9	Example: Simulation of a Bubbling Fluidized-Bed	
		Catalytic Reactor	485
	6.10	A Distributed Parameter Diffusion-Reaction Model	
		for the Alcoholic Fermentation Process	489
		6.10.1 Background on the Problems Associated with	
		the Heterogeneous Modeling of Alcoholic	
		Fermentation Processes	491
		6.10.2 Development of the Model	492
		6.10.3 Solution Algorithm	500
		6.10.4 Comparison Between the Model and	200
		Experimental/Industrial Data	501
		References	503
		Problems	503
		A A V A V A V A A A A A A A A A A A A A	505
7	Pract	tical Relevance of Bifurcation, Instability, and Chaos in	
	Chen	nical and Biochemical Systems	515
	7.1	Sources of Multiplicity	517

xx Contents

		7.1.1	Isothermal Multiplicity (or Concentration	
			Multiplicity)	517
		7.1.2	Thermal Multiplicity	518
		7.1.3	Multiplicity Due to the Reactor Configuration	519
	7.2	Simple	Quantitative Discussion of the Multiplicity	
		Phenon	nenon	519
	7.3	Bifurca	tion and Stability	520
		7.3.1	Steady-State Analysis	520
		7.3.2	Dynamic Analysis	529
		7.3.3	Chaotic Behavior	534
		Refere	nces	539
8	Nove	l Designs	s for Industrial Chemical/Biochemical Systems	545
	8.1	Novel	Reforming Process for the Efficient Production	
		of the	Ultraclean Fuel Hydrogen from Hydrocarbons	
		and Wa	aste Materials	545
		8.1.1	Introduction	545
		8.1.2	Literature Review	547
		8.1.3	Limitations of Current Reforming Technologies	550
		8.1.4	Main Characteristics of the Suggested Novel	
			Ultraclean/Efficient Reforming Process	
			Configuration	552
		8.1.5	Components of the Suggested Novel Ultraclean	
			Process for the Production of the Ultraclean	
			Fuel Hydrogen	553
		8.1.6	Main Tasks for the Exercise	555
	8.2	A Nov	el Fermentor	557
		8.2.1	Introduction	557
		8.2.2	Basic Research Description	558
		8.2.3	Tasks for the Exercise	561
		Refere	nces	563
		ndix A	Matrices and Matrix Algebra	567
		ndix B	Numerical Methods	589
		ndix C ndix D	Analytical Solution of Differential Equations Table of Laplace Transform of Some Common	607
			Functions	615
		ndix E	Orthogonal Collocation Technique	619
	Appe	ndix F	Some Software and Programming Environments	627

631