OXFORD

BIOLOGY

FUNGAL POPULATIONS SPECIES

Contents

Introduction	1
PART I Basic mycology	3
1 Elements of classification, structure, sexuality, biology and genetics of Fung	ji 5
1.1 Elements of classification	5
1.1.1 Convention on the use of names in mycology	6
1.2 Life cycles	8
1.3 Structural considerations	9
1.3.1 Hyphae and mycelia	9
1.3.2 Dimorphism	11
1.3.3 Perennating structures	11
1.3.4. Spores and conidia	12
1.4 Sexual reproduction and sexuality	13
1.4.1 Mating systems	16
1.5 Dispersal	18
1.6 Aspects of fungal biology of genetic significance	19
1.6.1 Clones	20
1.6.2 Phenotypic plasticity	20
1.6.3 Pleomorphism	21
1.6.4 Heterokaryosis and the parasexual cycle	21
1.6.5 Chromosomal DNA and cytology	22
1.6.6 Cytoplasmic organelles and other inherited cytoplasmic componen	ts 23
1.7 A simplified classification of the fungi	24
Further reading	25
PART II Methodology	27
2 Genetic markers for population studies—I Morphological,	
physiological and cytological markers	29
2.1 Morphological markers	30
2.2 Mating-type factors	30
2.3 Somatic incompatibility (SI)	31
2.3.1 SI in Ascomycotina and Fungi Anamorphici	31
2.3.1.1. Recognizing SI in Ascomycotina	32
2.3.1.2. Heterokaryon self-incompatibility	33
2.3.1.3. SI in similar or related taxa	33
2.3.1 4. St genetics	34

2.3.1.5. Complex SI behaviour	35
2.3.2 SI in Basidiomycotina	35
2.3.2.1 Recognizing SI in Basidiomycotina	37
2.3.2.2 Complex Si	38
2.3.2.3 Monokaryotic homogenic incompatibility in	
Basidiomycotina	38
2.3.2.4 Spatial extent of SI genets	39
2.3.2.5 SI genetics	39
2.4 Pathogenic markers	39
2.4.1 Virulence characters	39
2.4.1.1 Virulence genetics	40
2.4.2 Aggressiveness	41
2.5 Fungicide resistance as a marker	41
2.6 Cytological markers	42
2.6.1 Chromosomal techniques	42
2.6.2 Electrophoretic chromosomal techniques	43
2.6.3 Karyotyping procedures	45
Further reading	45
3 Genetic markers for population studies—II Molecular markers	47
3.1 Specific molecules	47
3.2 Proteins and polymorphic enzymes	48
3.3 Nucleic acids	50
3.3.1 The use of whole DNA molecules	52
3.3.2 The polymerase chain reaction	53
3.3.2.1 Primers for PCR	54
3.3.3 Random amplified polymorphic DNA (RAPD)	55
3.3.3.1 Template-mixed RAPDs	55
3.3.3.2 Sequence-characterized amplified regions (SCARs)	56
3.3.3.3 RAPD with single-strand conformational polymorphism	
(RAPD-SSCP or SSCP)	56
3.3.3.4 Denaturing gradient gel electrophoresis (DGGE or CDGE)	56
3.3.3.5 Variable numbers of tandem repeats (VNTRs)	56
3.3.3.6 Simple sequence repeats or microsatellites (SSRs)	57
3.3.3.7 Random amplified microsatellites (RAMs)	57
3.3.4 Amplified fragment-length polymorphism (AFLPs)	58
3.3.5 The analysis of nucleotide fragments	59
3.3.5.1 Sequencing	59
3.3.5.2 Restriction fragment length polymorphisms (RFLPs)	60
3.3.5.3 The use of probes with RFLPs: Southern blots	61
3.3.5.4 Amplified fragments	62
3.4 The utility of different molecular screening techniques	63
3.5 Taxonomic identification using sequence markers	63
Further reading	64
4 Polining fungal individuals, applearing historical and assertion	
4 Defining fungal individuals: ecological, biological and genetical aspects; sampling	
aspects; sampling 4.1 The physical and biological attributes of fungal genets	65 66
the hitsical and mininter artifultes of Itingal Genets	96

4.1.1 Mycelial extent	67
4.1.2 Substrate specificity and specific site locations	61
4.1.3 Persistence	61
4.1.4 Propagule dispersal and cloning	70
4.2 Recognition of intraspecific groups, genets and fungal individuals	70
4.2.1 Using the SI reaction	71
4.2.2 Using pathogenicity characters	72
4.2.3 Using molecular markers	77
4.2.4 Summation	73
4.3 Sampling	73
4.3.1 Spatial sampling procedures	74
4.3.1.1 Site sampling	74
4.3.1.2 Sample size	77
4.3.1.3 Pattern recognition	77
4.3.1.4 Practical techniques for isolating and recognizing fungi	79
Further reading	79
5 Describing and analysing populations: basic genetic and	
phylogenetic aspects	80
5.1 Phenotypic and genetic diversity	81
5.1.1 Phenotypic diversity	81
5.1.2 Phenotypic similarity and dissimilarity	83
5.†.2.1 Similarity	83
5.1.2.2 Dissimilarity	84
5.1.3 Genetic and genotypic diversity	84
5.1.4 Comparing genetic variation within subdivided populations or	
between populations	8
5.2. Character association: the recognition of distinct genotypic	
groups and their relationships	87
5.2.1 ANOVA and AMOVA	89
5.2.2 Ordination methods	90
5.2.3 Hierarchical methods	92
5.2.3.1 Distance methods	93
5.2.3.2 Discrete character methods	94
5.2.3.3 Estimating the likelihood of any tree and discriminating	
between alternative trees	9:
5.3. Population history: the coalescent and nested clade analysis	90
Further reading	101
RT III Processes in populations	103
6 The generation of variation—I Mutation and migration	105
6.1 The establishment of mutants, random genetic change and	
the frequency of detectable mutations	105
6.1.1 Genetic hitch-hiking	109
6.1.2 The frequency of mutation in fungal chromosomes	109
6.1.2.1 Fungal mutation in nature	110

	6.2 Natural mutants of fungi	112
	6.2.1 The nature of spontaneous natural mutants in fungi	112
	6.2.2 Gene and chromosomal changes associated with	
	recombination and gene conversion	114
	6.2.3 Mitochondrial mutation in mtDNA: high-frequency specific	
	transfer	117
	6.2.4 Aneuploidy and polyploidy	118
	6.2.5 Mini-chromosomes	119
	6.3 Migration and gene flow	119
	6.3.1 Fungal dispersal in nature: airborne dispersal	120
	6.3.2 Fungal dispersal in nature: dispersal by animals	125
	6.3.3 Establishment of dispersed fungal propagules	125 126
	6.3.4 Estimating gene flow indirectly Further reading	120
	rurner reading	120
7	The generation of variation—II The importance and diversity of	
	inbreeding and outbreeding	130
	7.1 Sexual reproduction in nature	131
	7.1.1 The genetic consequences of sexual reproduction	132
	7.2 Mating systems and their variations	135
	7.2.1 Mating systems in Chytridiomycotina	136
	7.2.2 Mating systems in Zygomycotina	137
	7.2.3 Variations on basic mating systems in Ascomycotina	138
	7.2.3.1 Multiple fertilization	138
	7.2.3.2 Inbreeding in normally dimictic Ascomycotina	139
	7.2.3.3 Mating type switching	139
	7.2.3.4 Preferential crossing between siblings	140
	7.2.3.5 Outcrossing in normally self-fertile species	140
	7.2.4 Variations on basic mating systems in Basidiomycotina	141
	7.2.5 Secondary inbreeding: homoheteromixis (secondary homothallism)	142
	nomothalism; 7.2.5.1 Homoheteromixis in Ascomycotina	142
	7.2.5.2 Homoheteromixis in Ascomycotina 7.2.5.2 Homoheteromixis in Basidiomycotina	142
	7.2.6 Polymorphic and partial sexual expression	145
	7.2 6.1 Female sterility	145
	7.2.7 Sterility	147
	7.2.8 Amixis	147
	7.2.9 Variations on basic mating systems in Straminipila	148
	7.3 The balance of outbreeding and inbreeding	149
	7.3.1.Environmental effects on sexual reproduction	149
	7.3.2. More complex in- and outbreeding patterns	151
	7.3.3. In- and outbreeding: conclusions	153
	Appendix: Distinguishing between clones and recombinant	
	populations	153
	7A.1 Direct observation of reproduction in fungi	155
	7A.2 Comparisons of genetic diversity	156
	7A.3 Comparisons of genotypic diversity	156
	7A.4 Gametic disequilibrium	157

	7A.5 The index of association	159
	7A.6 The parsimony tree permutation test	160
	7A.7 Summary	161
	Further reading	161
8	The generation of variation—III Heterokaryosis, parasexuality,	
	hybridization and polyploidy	162
	8.1 Heterokaryosis and parasexuality	162
	8.1.1 Heterokaryosis	164
	8.1.1.1 Heterokaryosis in Mucorales	164
	8.1.1.2 Heterokaryosis in Glomales	164
	8.1.1.3 Heterokaryosis in Ascomycotina and Fungi Anamorphici	167
	8.1.1.4 Heterokaryosis in Basidiomycotina	168
	8.1.2 Parasexuality	169
	8.1.2.1 Parasexuality and the 'Buller phenomenon'	170
	8.1.3 The significance of heterokaryosis and parasexuality for fungi	171
	8.2. Hybridization and polyploidy	171
	8.2.1 Hybridization in Eumycota	172
	8.2.1.1 Hybridization in species possessing a pheromone in common	172
	8.2.1.2 Hybrids associated with neutral situations	175
	8.2.1.3 Hybridization involving anamorphic forms	178
	8.2.1.4 Other possible hybrids	180
	8.2.2 HybridiZation in Straminipila	181
	8.2.3 Polyploidy	182
	8.2.3.1 Polyploidy in Eumycota	182
	8.2.3.2 Polyploidy in Straminipila	183
	8.2.4 The significance of hybridization and polyploidy for fungi	184
	Further reading	184
9	Change in gene frequency in fungal populations—I General considerations:	
	selection for oligogenically determined traits	185
	9.1 General considerations	185
	9.1.1 Quantifying selection and fitness in fungi	188
	9.1.1.1 Oligogenic selection: selection coefficients	188
	9.1.1.2 Multigenic selection: selection differentials	190
	9.2 Special aspects of fungal selection	191
	9.3 Intra-mycelial selection	191
	9.3.1. Non-nuclear intra-mycelial selection	192
	9.3.1.1 Mycoviruses	192
	9.3.2 Experimental inter-nuclear, intra-mycelial selection	
	in heterokaryons	192
	9.3.3 Inter-nuclear intra-mycelial selection under industrial conditions	195
	9.4 Inter-mycelial selection	198
	9.4.1 Selection for oligogenically determined traits relevant to	
	agricultural situations	198
	9.4.1.1 Selection for fungicide resistance	198
	9.4.1.2 Selection for pathogenicity under agricultural conditions	199
	9.4.1.3 Selection for 'unnecessary' virulence genes: a controversy	201

9.4.2 Specific virulence genes in wild populations	203
9.4.3 Density-dependent and frequency-dependent selection	205
9.4.3.1 Density-dependent selection	205
9.4.3.2 Frequency-dependent selection	206
Further reading	207
10 Change in gene frequency in fungal populations—Il Natural selection for	
multigenically determined traits: competition and fitness	208
10.1 Experimental selection for multigenically determined traits in fungi	208
10.1.1 Experimental selection for growth rate in fungi	208
10.1.2 Experimental selection for ascospore size	211
10.2 Multigenic selection in agricultural situations	211
10.3 Multigenic selection in natural populations	212
10.3.1 Selection for quantitative traits in natural populations	213
10.3.2 Host adaptation	213
10.3.3 Ecological adaptation	217
10.3.4 Experimental transplantation as a tool to detect selection	220
10.4 Intraspecific competition and relative fitness	222
10.4.1 Experimental studies on intraspecific competition	223
10.4.2 Field experiments on intraspecific competition	225
10.5 Complex intraspecific competition in nature	226
10.6 General comments	227
Appendix: More Complex approaches to estimating fitness in fungi	230
10A.1 Fitness indices	230
10A.2 More complex analyses of fitness components and selection	231
10A.2.1 An experiment and a complex fungal model	234
Further reading	238
PART IV Species and speciation	239
11 Fungal species	241
11.1 Fungal species as morphospecies	242
11.2 Fungal species as agamospecies	244
11.3 Fungal species as biological species	
11.3.1 Biological species and Ascomycotina	247
11.3.2 Biological species and Basidiomycotina	249
11.3.3 Biological species in Zygomycotina and Chytridiomycotina	254
11.3.4 Fungi and the biological species	255
11.4 Fungi as phylogenetic species	256
11.5 Conclusions	261
Further reading	262
12 Speciation in fungi	263
12.1 Historical aspects of speciation	263
12.1.1 Taxonomic data and speciation	264
12.1.2 Assessing species lineages	264
12.2 Speciation processes	267
12.2.1 Selection by the habitat	269

xiii

12.2.2 Selection for the timing of development	27 ⁻				
12.2.3 Episodic selection for adaptive response	27				
12.2.3.1 Dramatic climate change	27				
12.2.3.2 Founder populations, drift and speciation	273				
12.2.3.3 Human influences predisposing to speciation	27				
12.3 Modes of reproductive isolation	270				
12.3.1 The gradual development of reproductive isolation	27				
12.3.2 Abrupt reproductive isolation through change of mating system	280				
12.3.3 Abrupt reproductive isolation through hybridization and polyploidy	283				
12.3.4 'Instant' speciation—a hypothetical situation	284				
12.4 Fungal populations and speciation	280				
12.4.1 Secondarily asexual species	28				
12.4.2 Sexual fungal species	28				
12.5 Speciation in fungi: some considerations	29				
Further reading	29				
References	29				
Abbreviations	321				
Mycological glossary Classification of fungi in the text Species index					
				General index	34