RAINFALL-RUNOFF ODELLING The Primer Keith J Beven

Contents

retace	i
1 Down to Basics: Runoff Processes and the Modelling Process	
1.1 Why Model?	
1.2 How to Use This Book	
1.3 The Modelling Process	
1.4 Perceptual Models of Catchment Hydrology	
1.5 Flow Processes and Geochemical Characteristics	14
1.6 Runoff Production and Runoff Routeing	ĺ'
1.7 The Problem of Choosing a Conceptual Model	1
1.8 Model Calibration and Validation Issues	19
1.9 Key Points from Chapter One	23
2 Evolution of Rainfall-Runoff Models: Survival of the Fittest?	25
2.1 The Starting Point: The Rational Method	25
2.2 Practical Prediction: Runoff Coefficients and Time Transformations	26
2.3 Variations on the Unit Hydrograph	33
2.4 Early Digital Computer Models: The Stanford Watershed Model and its Descendants	37
2.5 Distributed Process Description Based Models	41
2.6 Simplified Distributed Models Based on Distribution Functions	44
2.7 Recent Developments: What is the Current State of the Art?	45
2.8 Key points from Chapter 2	45
Box 2.1 Linearity, Nonlinearity and Nonstationarity	46
Box 2.2 The Xinanjiang/Arno/VIC Model	47
Box 2.3 Control Volumes and Differential Equations	51
3 Data for Rainfall-Runoff Modelling	53
3.1 Rainfall Data	52

	3.2 Discharge Data	57
	3.3 Meteorological Data and the Estimation of Interception and	58
	Evapotranspiration	
	3.4 Meteorological Data and the Estimation of Snowmelt	63
	3.5 Distributing Meteorological Data Within a Catchment	64
	3.6 Other Hydrological Variables	64
	3.7 Digital Elevation Data	65
	3.8 Geographical Information and Data Management Systems	69
	3.9 Remote Sensing Data	70
	3.10 Key Points from Chapter 3	73
	Box 3.1 The Penman-Monteith Combination Equation for Estimating	
	Evapotranspiration Rates	73
	Box 3.2 Estimating Interception Losses	77
	Box 3.3 Estimating Snowmelt by the Degree-Day Method	80
4	Predicting Hydrographs Using Models Based on Data	85
	4.1 Data Availability and Empirical Modelling	85
	4.2 Empirical Regression Approaches	86
	4.3 Transfer Function Models	88
	4.4 Case Study: DBM Modelling of the CI6 Catchment at Llyn Briane, Wales	93
	4.5 The TFM Software	96
	4.6 Nonlinear and Multiple Input Transfer Functions	96
	4.7 Physical Derivation of Transfer Functions	97
	4.8 Using Transfer Function Models in Flood Forecasting	102
	4.9 Empirical Rainfall-Runoff Models Based on	102
	Neural Network Concepts	
	4.10 Key Points from Chapter 4	105
	Box 4.1 Linear Transfer Function Models	105
	Box 4.2 Use of Transfer Functions to Infer Effective Rainfalls	110
	Box 4.3 Time Variable Estimation of Transfer Function Parameters	111
5	Predicting Hydrographs Using Distributed Models Based on Process Descriptions	115
	5.1 The Physical Basis of Distributed Models	115
	5.2 Physically Based Rainfall-Runoff Models at the Catchment Scale	124
	5.3 Case Study: Modelling Flow Processes at Reynolds Creek, Idaho	130
	5.4 Case Study: Blind Validation Test of the SHE Model on the Rimbaud Catchment, France	132
	5.5 Simplified Distributed Models	136
	5.6 Case Study: Modelling Runoff Generation at Walnut Gulch, Arizona	145
	5.7 Case Study: Modelling the R-5 Catchment at Chichasha, Oklahoma	a 148
	5.8 Validation or Evaluation of Distributed Models	150
	2.0 - Tanada of Lindadion of Distributed Models	150

	Co.	ntents	vii
5.9 Dis	cussion of Distributed Models Based on Process Descriptions	1	152
5.10 Ke ₂	y Points from Chapter 5		153
Box 5.1			154
Box 5.2			156
Box 5.3	Solution of Partial Differential Equations:		
	Some Basic Concepts		161
Box 5.4	Soil Moisture Characteristic Functions for Use in the Richard	rds	
	Equation		166
Box 5.5			170
Box 5.6			172
Box 5.7	Derivation of the Kinematic Wave Equation		176
	gical Similarity and Distribution Function -Runoff Models		179
	drological Similarity and Hydrological Response Units		170
6.1 Hy	Probability Distributed Moisture Model (PDM)		179
63 Hv	drological Response Unit Models		180
6.5 Hy	PMODEL		182 187
	e Study: Application of TOPMODEL to the Saetembekken		196
Cat	chment, Norway		190
6.6 TO			200
	Points from Chapter 6		202
Box 6.1	The SCS Curve Number Model Revisited		202
Box 6.2			208
7 Paramet	er Estimation and Predictive Uncertainty		217
7.1 Para	ameter Estimation and Predictive Uncertainty		217
7.2 Para	ameter Response Surfaces and Sensitivity Analysis		219
7.3 Peri	formance Measures and Likelihood Measures		223
7.4 Aut	omatic Optimization Techniques		226
7.5 Rec	ognizing Uncertainty in Models and Data: Reliability Analysi	ıs	229
	del Calibration Using Set Theoretic Methods		231
7.7 Rec	ognizing Equifinality: The GLUE Method		234
7.8 Cas	e Study: An Application of the GLUE Methodology in		240
Mod	delling the Saeternbekken MINIFELT Catchment, Norway		
7.9 Dea	ling with Equifinality in Rainfall-Runoff Modelling		244
7.10 Pred	dictive Uncertainty and Risk		247
7.11 Key	Points from Chapter 7		247
Box 7.1	Likelihood Measures for Use in Evaluating Models		248
Box 7.2	Combining Likelihood Measures		253
8 Predictin	g Floods		255
8.1 Data	a Requirements for Real-Time Prediction		256

8.2 Rainfall-Runoff Modelling for Flood Forecasting	259
8.3 The Lambert ISO Model	260
8.4 Adaptive Transfer Function Models for Real-Time Forecasting	261
8.5 Case Study: A Real-Time Forecasting System for the Town of Dumfries	262
8.6 Methods for Flood Inundation in Real Time	264
8.7 Flood Frequency Prediction Using Rainfall-Runoff Models	265
8.8 Case Study: Modelling the Flood Frequency Characteristics of the Wye Catchment, Wales	270
8.9 Flood Frequency Estimation Including Snowmelt Events	271
8.10 Hydrological Similarity and Flood Frequency Estimation	272
8.11 Key Points from Chapter 8	273
Box 8.1 Adaptive Gain Parameter Estimation for Real-Time Forecasting	274
9 Predicting the Effects of Change	277
9.1 Predicting the Impacts of Land Use Change	279
9.2 Case Study: Predicting the Impacts of Fire and Logging on the Melbourne Water Supply Catchments	284
9.3 Predicting the Impacts of Climate Change	285
9.4 Case Study: Modelling the Impact of Climate Change on Flood Frequency in the Wye Catchment	293
9.5 Key Points from Chapter 9	294
10 Revisiting the Problem of Model Choice	297
10.1 Model Choice in Rainfall-Runoff Modelling as Hypothesis Testing	297
10.2 The Value of Prior Information	300
10.3 The Ungauged Catchment Problem	301
10.4 Changing Parameter Values and Predictive Uncertainty	302
10.5 Predictive Uncertainty and Model Validation	303
10.6 Final Comments: An Uncertain Future?	304
Appendix A Demonstration Software	307
Appendix B Glossary of Terms	315
References	323
Index	355