
Concepts of Genetics

Contents

Preface xxiv

Part ONE

Genes, Chromosomes, and Heredity

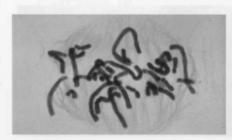
1 Introduction to Genetics

- 1.1 From Mendel to DNA in Less Than a Century
 Mendel's Work on Transmission of Traits 2
 The Chromosome Theory of Inheritance:
 Uniting Mendel and Meiosis 3
 Genetic Variation 4
 The Search for the Chemical Nature of Genes:
 DNA or Protein? 4
- 1.2 Discovery of the Double Helix Launched the Recombinant DNA Era 5
 The Structure of DNA and RNA 5
 Gene Expression: From DNA to Phenotype 5
 Proteins and Biological Function 6
 Linking Genotype to Phenotype:
 Sickle-Cell Anemia 6
- 1.3 Genomics Grew Out of Recombinant DNA
 Technology 7
 Making Recombinant DNA Molecules
 and Cloning DNA 7
 Sequencing Genomes: The Human
 Genome Project 8
- 1.4 The Impact of Biotechnology Is Growing 9
 Plants, Animals, and the Food Supply 9
 Who Owns Transgenic Organisms? 10
 Biotechnology in Genetics and Medicine 10
- 1.5 Genetic Studies Rely On the Use
 of Model Organisms 11
 The Modern Set of Genetic Model Organisms 12
 Model Organisms and Human Diseases 13
- 1.6 We Live in the "Age of Genetics" 14

Genetics, Technology, and Society 14

Chapter Summary 15 Problems and Discussion Questions 15 Selected Readings 16

2 Mitosis and Meiosis 17


- 2.1 Cell Structure is Closely Tied to Genetic Function 18
 Cell Boundaries 18
 The Nucleus 18
 The Cytoplasm and Cellular Organelles
- 2.2 In Diploid Organisms, Chromosomes Exist in Homologous Pairs 20
- 2.3 Mitosis Partitions Chromosomes into Dividing Cells 23
 Interphase and the Cell Cycle 23
 Prophase 25
 Prometaphase and Metaphase 26
 Anaphase 26
 Telophase 26
- 2.4 Meiosis Reduces the Chromosome Number from Diploid to Haploid in Germ Cells and Spores 27 An Overview of Meiosis 28

 The First Meiotic Division: Prophase I 28

 Metaphase, Anaphase, and Telophase I 29

 The Second Meiotic Division 29
- 2.5 The Development of Gametes Varies during Spermatogenesis and Oogenesis 31
- 2.6 Meiosis Is Critical to the Successful Sexual Reproduction of All Diploid Organisms 32
- 2.7 Electron Microscopy Has Revealed the Cytological Nature of Mitotic and Meiotic Chromosomes 33 Chromatin and Chromosomes 33 The Synaptonemal Complex 34

Chapter Summary 35
Insights and Solutions 36
Problems and Discussion Questions 37
Extra-Spicy Problems 38
Selected Readings 38

3	Mandali	ian	Genetics	30
_	MIGHTORI	Ian	delletics	33

- Mendel Used a Model Experimental Approach to Study Patterns of Inheritance 40
- 3.2 The Monohybrid Cross Reveals How One Trait Is
 Transmitted from Generation to Generation 40
 Mendel's First Three Postulates 41
 Modern Genetic Terminology 42
 Mendel's Analytical Approach 42
 Punnett Squares 43
 The Testcross: One Character 43
- 3.3 Mendel's Dihybrid Cross Revealed His Fourth
 Postulate: Independent Assortment 44
 Independent Assortment 44
 The Testcross: Two Characters 47
- The Trihybrid Cross Demonstrates That Mendel's
 Principles Apply to Inheritance of Multiple Traits
 The Forked-Line Method, or Branch Diagram
 47
- .5 Mendel's Work Was Rediscovered in the Early 20th Century 49
- 3.6 The Correlation of Mendel's Postulates with the Behavior of Chromosomes Formed the Foundation of Modern Transmission Genetics 49 Unit Factors, Genes, and Homologous Chromosomes 49
- 3.7 Independent Assortment Leads to Extensive Genetic Variation 51
- 3.8 Laws of Probability Help to Explain Genetic Events 51
 The Product Law and the Sum Law 51
 Conditional Probability 52
 The Binomial Theorem 52
- 3.9 Chi-Square Analysis Evaluates the Influence of Chance on Genetic Data 54
 Interpreting y² Calculations 56
- 3.10 Pedigrees Reveal Patterns of Inheritance in Humans 56 Pedigree Conventions 56 Pedigree Analysis 57
 - Genetics, Technology, and Society 59

Tay-Sachs Disease: A Recessive Molecular Disorder in Humans 59

Chapter Summary 59 Insights and Solutions 60

Problems and Discussion Questions 62 Extra-Spicy Problems 64 Selected Readings 65

4 Extensions of Mendelian Genetics

- 4.1 Alleles Alter Phenotypes in Different Ways 67
- 4.2 Geneticists Use a Variety of Symbols for Alleles4.3 In Incomplete Dominance, Neither Allele Is
- Dominant 68
 4.4 In Codominance, the Influence of Both Alleles
- in a Heterozygote Is Clearly Evident 69
 4.5 Multiple Alleles of a Gene May Exist in a Population 70
 The ABO Blood Groups 70
 The A and B Antigens 71
 The Bombay Phenotype 71
- The white Locus in *Drosophila* 72

 4.6 Lethal Alleles Represent Essential Genes 72

 Dominant Lethal Mutations 73
- 4.7 Combinations of Two Gene Pairs Involving Two
 Modes of Inheritance Modify the 9:3:3:1 Ratio 74
- 4.8 Phenotypes Are Often Affected by More Than
 One Gene 75
 Epistasis 75
 Unique Inheritance Patterns 75
 - Novel Phenotypes 78
 Other Modified Dihybrid Ratios 79
- 4.9 Expression of a Single Gene May Have Multiple Effects 80
- 4.10 X-Linkage Describes Genes on the X Chromosome 8
 X-Linkage in Drosophila 81
 X-Linkage in Humans 82
- Lesch-Nyhan Syndrome: The Molecular Basis of a Rare X-Linked Recessive Disorder 84 4.11 In Sex-Limited and Sex-Influenced Inheritance,
- an Individual's Sex Influences the Phenotype 84
 4.12 Phenotypic Expression Is Not Always a Direct
- Reflection of the Genotype 85
 Penetrance and Expressivity 85
 Genetic Background: Suppression and Position

Effects 86

Temperature Effects 87 Nutritional Effects 87 Onset of Genetic Expression 88 Genetic Anticipation 88 Genomic (Parental) Imprinting 88

Genetics, Technology, and Society 90

Improving the Genetic Fate of Purebred Dogs

Chapter Summary 91 Insights and Solutions 91 Problems and Discussion Ouestions 93 Extra-Spicy Problems Selected Readings 99

Chromosome Mapping in Eukaryotes

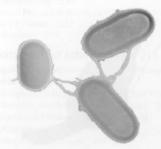
Genes Linked on the Same Chromosome Segregate Together 101

The Linkage Ratio 102

5.2 Crossing Over Serves as the Basis of Determining the Distance between Genes during Chromosome Mapping 104

Morgan and Crossing Over 104 Sturtevant and Mapping 104 Single Crossovers 106

Determining the Gene Sequence during Mapping Relies on the Analysis of Multiple Crossovers 107 Multiple Exchanges 107 Three-Point Mapping in Drosophila 108 Determining the Gene Sequence 110


A Mapping Problem in Maize 111 Interference Affects the Recovery of Multiple Exchanges 114

As the Distance between Two Genes Increases. Mapping Experiments Become More Inaccurate 115

5.6 Drosophila Genes Have Been Extensively Mapped 116

Crossing Over Involves a Physical Exchange between Chromatids 117

Recombination Occurs between Mitotic Chromosomes 118

Exchanges Also Occur between Sister Chromatids 120

5.10 Linkage Analysis and Mapping Can Be Performed in Haploid Organisms 120 Gene-to-Centromere Mapping 121 Ordered versus Unordered Tetrad Analysis 123 Linkage and Mapping 124

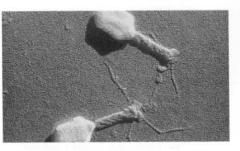
5.11 Lod Score Analysis and Somatic Cell Hybridization Were Historically Important in Creating Human Chromosome Maps 126

5.12 Gene Mapping Is Now Possible Using Molecular Analysis of DNA 128 Gene Mapping Using Annotated Computer Databases 128

5.13 Did Mendel Encounter Linkage? 128

Why Didn't Gregor Mendel Find Linkage? 129 Chapter Summary 129 Insights and Solutions 130 Problems and Discussion Questions 132 Extra-Spicy Problems 135 Selected Readings 136

6 Genetic Analysis and Mapping in Bacteria and Bacteriophages


Bacteria Mutate Spontaneously and Grow 6.1 at an Exponential Rate 138

6.2 Conjugation Is One Means of Genetic Recombination in Bacteria 139 F and F Bacteria 140 Hfr Bacteria and Chromosome Mapping 141 Recombination in $F^+ \times F^-$ Matings: A Reexamination 144 The F' State and Merozygotes 145

6.3 Mutational Analysis Led to the Discovery of the Rec Proteins Essential to Bacterial Recombination 146

6.4 F Factors Are Plasmids 146

6.5 Transformation Is Another Process Leading to Genetic Recombination in Bacteria 147 The Transformation Process 147 Transformation and Linked Genes 147

- Bacteriophages Are Bacterial Viruses 148 Phage T4: Structure and Life Cycle 148 The Plaque Assay 149 Lysogeny 150
- Transduction Is Virus-Mediated Bacterial DNA 6.7 Transfer 151 The Lederberg-Zinder Experiment 151 The Nature of Transduction 152 Transduction and Mapping 153
- Bacteriophages Undergo Intergenic 6.8 Recombination 153

Mapping in Bacteriophages 154 Intragenic Recombination Occurs in Phage T4 154

6.9 The rII Locus of Phage T4 154 Complementation by rll Mutations 155 Recombinational Analysis 156 Deletion Testing of the rII Locus 156 The rII Gene Map 157

Genetics, Technology, and Society 159

Bacterial Genes and Disease: From Gene Expression to Edible Vaccines 159

Chapter Summary 160 Insights and Solutions 160 Problems and Discussion Questions Extra-Spicy Problems 163 Selected Readings 164

Sex Determination and Sex Chromosomes 165

Sexual Differentiation and Life Cycles 166 Chlamydomonas 166 Zea mays 167 Caenorhabditis elegans 168

- 7.2 X and Y Chromosomes Were First Linked to Sex Determination Early in the 20th Century 169
- 7.3 The Y Chromosome Determines Maleness in Humans 170 Klinefelter and Turner Syndromes 171

47,XXX Syndrome 172 47.XYY Condition 172 Sexual Differentiation in Humans 173 The Y Chromosome and Male Development 173 The Ratio of Males to Females in Humans Is Not 1.0 175

7.5 Dosage Compensation Prevents Excessive Expression of X-Linked Genes in Humans and Other Mammals 175 Barr Bodies 176 The Lyon Hypothesis 176

The Mechanism of Inactivation 178 The Ratio of X Chromosomes to Sets of Autosomes 7.6 Determines Sex in Drosophila 178 Dosage Compensation in Drosophila Drosophila Mosaics 180

7.7 Temperature Variation Controls Sex Determination in Reptiles 181

Chapter Summary 182

Genetics, Technology, and Society 183

A Question of Gender: Sex Selection in Humans 183 Insights and Solutions 184

Problems and Discussion Questions 184 Extra-Spicy Problems 185 Selected Readings 186

- Chromosome Mutations: Variation in Chromosome Number and Arrangement 187
- 8.1 Specific Terminology Describes Variations in Chromosome Number 188
- Variation in the Number of Chromosomes Results 8.2 from Nondisjunction 188
- 8.3 Monosomy, the Loss of a Single Chromosome, May Have Severe Phenotypic Effects 189 Partial Monosomy in Humans: The Cri-du-Chat Syndrome 189
- 8.4 Trisomy Involves the Addition of a Chromosome to a Diploid Genome 190 Down Syndrome 191 Patau Syndrome 193

Edwards Syndrome 193

Viability in Human Aneuploidy 193

20		>>			11	11
28	16	11	88	36	31	11 12
0E	25	84		**	ää	16
35	\$ 20 20		24 21	66 22	1	1

- 8.5 Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, is Prevalent in Plants 194
 Autopolyploidy 195
 Allopolyploidy 196
 Endopolyploidy 198
- 8.6 Variation Occurs in the Structure and Arrangement of Chromosomes 198
- 8.7 A Deletion Is a Missing Region of a Chromosome 199
- 8.8 A Duplication Is a Repeated Segment of the Genetic Material 200

Gene Redundancy and Amplification: Ribosomal RNA Genes 200

The Bar-Eye Mutation in Drosophila 201

The Role of Gene Duplication in Evolution 201

8.9 Inversions Rearrange the Linear Gene Sequence 203

Consequences of Inversions during Gamete
Formation 203

Position Effects of Inversions 204

Evolutionary Advantages of Inversions 205
8.10 Translocations Alter the Location of Chromosomal
Segments in the Genome 206

Translocations in Humans: Familial Down Syndrome 206

8.11 Fragile Sites in Humans Are Susceptible to Chromosome Breakage 208 Fragile X Syndrome (Martin–Bell Syndrome) 208

Genetics, Technology, and Society 209

The Link between Fragile Sites and Cancer 209

Chapter Summary 210
Insights and Solutions 210
Problems and Discussion Questions 211
Extra-Spicy Problems 212
Selected Readings 213

9 Extranuclear Inheritance 214

and Mitochondria 215
Chloroplasts: Variegation in Four O'Clock Plants 215
Chloroplast Mutations in Chlamydomonas 216
Mitochondrial Mutations: The Case of poky
in Neurospora 216
Petites in Saccharomyces 217

Organelle Heredity Involves DNA in Chloroplasts

9.2 Knowledge of Mitochondrial and Chloroplast DNA
Helps Explain Organelle Heredity 218
Organelle DNA and the Endosymbiotic Theory 218
Molecular Organization and Gene Products
of Chloroplast DNA 219
Molecular Organization and Gene Products
of Mitochondrial DNA 220

 Mutations in Mitochondrial DNA Cause Human Disorders 221

9.4 Infectious Heredity Is Based on a Symbiotic Relationship between Host Organism and Invader 222 Kappa in *Paramecium* 222

Infective Particles in *Drosophila* 224

9.5 In Maternal Effect, the Maternal Genotype Has a Strong Influence during Early Development 224

Ephestia Pigmentation 224

Limnaea Coiling 224

Embryonic Development in Drosophila 225

Genetics, Technology, and Society 226

Mitochondrial DNA and the Mystery of the Romanovs 226

Chapter Summary 227
Insights and Solutions 228
Problems and Discussion Questions 22
Extra-Spicy Problems 229
Selected Readings 230

Part Two

DNA: Structure, Replication, and Variation

10 DNA Structure and Analysis 231

10.1 The Genetic Material Must Exhibit Four Characteristics 232

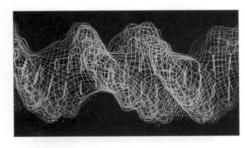
 Until 1944, Observations Favored Protein as the Genetic Material 233

10.3 Evidence Favoring DNA as the Genetic Material Was First Obtained during the Study of Bacteria and Bacteriophages 233 Transformation: Early Studies 233

Transformation: The Avery, MacLeod, and McCarty Experiment 235 The Hershey-Chase Experiment 236

Transfection Experiments 239

10.4 Indirect and Direct Evidence Supports the Concept


- that DNA Is the Genetic Material in Eukaryotes 239 Indirect Evidence: Distribution of DNA 239 Indirect Evidence: Mutagenesis 239 Direct Evidence: Recombinant DNA Studies 240
- 10.5 RNA Serves as the Genetic Material in Some Viruses 240
- 10.6 Knowledge of Nucleic Acid Chemistry Is Essential to the Understanding of DNA Structure 241 Nucleotides: Building Blocks of Nucleic Acids 241 Nucleoside Diphosphates and Triphosphates 243 Polynucleotides 243
- 10.7 The Structure of DNA Holds the Key to Understanding Its Function 243 Base Composition Studies 244 X-Ray Diffraction Analysis 245 The Watson-Crick Model 245
- 10.8 Alternative Forms of DNA Exist 248
- 10.9 The Structure of RNA Is Chemically Similar to DNA, but Single Stranded 249 Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid 250
- 10.10 Many Analytical Techniques Have Been Useful during the Investigation of DNA and RNA 251 Absorption of Ultraviolet Light (UV) 251 Sedimentation Behavior 251 Denaturation and Renaturation of Nucleic Acids 253 Molecular Hybridization 254 Fluorescent in situ Hybridization (FISH) 255 Reassociation Kinetics and Repetitive DNA 255 Electrophoresis of Nucleic Acids 257

Genetics, Technology, and Society 258

The Twists and Turns of the Helical Revolution

Chapter Summary 259 Insights and Solutions 259 Problems and Discussion Questions 260 Extra-Spicy Problems 261 Selected Readings 262

11 DNA Replication and Recombination

11.1 DNA Is Reproduced by Semiconservative Replication 264 The Meselson-Stahl Experiment 265 Semiconservative Replication in Eukaryotes 266 Origins, Forks, and Units of Replication 266

11.2 DNA Synthesis in Bacteria Involves Five Polymerases, as well as Other Enzymes 268 DNA Polymerase I 268 Synthesis of Biologically Active DNA 269 DNA Polymerase II, III, IV, and V 270

- 11.3 Many Complex Issues Must Be Resolved during DNA Replication 271
- 11.4 The DNA Helix Must Be Unwound 271
- 11.5 Initiation of DNA Synthesis Requires an RNA Primer 272
- 11.6 Antiparallel Strands Require Continuous and Discontinuous DNA Synthesis 272
- 11.7 Concurrent Synthesis Occurs on the Leading and Lagging Strands 273
- 11.8 Proofreading and Error Correction Are an Integral Part of DNA Replication 273
- 11.9 A Coherent Model Summarizes DNA Replication
- 11.10 Replication Is Controlled by a Variety of Genes 274
- 11.11 Eukaryotic DNA Synthesis Is Similar to Synthesis in Prokaryotes, but More Complex 275 Multiple Replication Origins 275 Eukaryotic DNA Polymerases 275
- 11.12 The Ends of Linear Chromosomes Are Problematic during Replication 276
- 11.13 DNA Recombination, Like DNA Replication, Is Directed by Specific Enzymes 278
- 11.14 Gene Conversion Is a Consequence of DNA Recombination 279

Genetics, Technology, and Society 281

Telomerase: The Key to Immortality? 281

Chapter Summary 282 Insights and Solutions 282

Problems and Discussion Questions 283 Extra-Spicy Problems 284 Selected Readings 285

12 DNA Organization in Chromosomes 286

- 12.1 Viral and Bacterial Chromosomes Are Relatively Simple DNA Molecules 287
- 12.2 Supercoiling Is Common in the DNA of Viral and Bacterial Chromosomes 289
- 12.3 Specialized Chromosomes Reveal Variations in Structure 290 Polytene Chromosomes 290

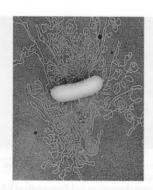
Lampbrush Chromosomes 291

12.4 DNA Is Organized into Chromatin

in Eukaryotes 292

Chromatin Structure and Nucleosomes 292 High Resolution Studies of the Nucleosome Core Heterochromatin 295

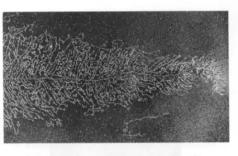
- 12.5 Chromosome Banding Differentiates Regions along the Mitotic Chromosome 296
- 12.6 Eukaryotic Chromosomes Demonstrate Complex Organization Characterized by Repetitive DNA 297 Repetitive DNA and Satellite DNA 297 Centromeric DNA Sequences 298 Telomeric DNA Sequences 299 Middle Repetitive Sequences: VNTRs and


Dinucleotide Repeats 300 Repetitive Transposed Sequences: SINES and LINES 300

Middle Repetitive Multiple-Copy Genes 301

12.7 The Vast Majority of a Eukaryotic Genome Does Not Encode Functional Genes 301

Chapter Summary 301 Insights and Solutions 302 Problems and Discussion Questions 302 Extra-Spicy Problems 303 Selected Readings 305



Part THREE

Expression and Regulation of Genetic Information

- 13 The Genetic Code and Transcription 306
- 13.1 The Genetic Code Exhibits a Number of Characteristics 307
- 13.2 Early Studies Established the Basic Operational Patterns of the Code 307 The Triplet Nature of the Code 308 The Nonoverlapping Nature of the Code 308 The Commaless and Degenerate Nature of the Code 309
- 13.3 Studies by Nirenberg, Matthaei, and Others Led to Deciphering of the Code 309 Synthesizing Polypeptides in a Cell-Free System 309 Homopolymer Codes 310 Mixed Copolymers 310 The Triplet Binding Assay 311 Repeating Copolymers 312
- 13.4 The Coding Dictionary Reveals Several Interesting Patterns among the 64 Codons 313 Degeneracy and the Wobble Hypothesis 313 The Ordered Nature of the Code 314 Initiation, Termination, and Suppression 314
- 13.5 The Genetic Code Has Been Confirmed in Studies of Phage MS2 315
- 13.6 The Genetic Code Is Nearly Universal 315
- 13.7 Different Initiation Points Create Overlapping Genes 316
- 13.8 Transcription Synthesizes RNA on a DNA Template 317
- 13.9 Studies with Bacteria and Phages Provided Evidence for the Existence of mRNA 317
- 13.10 RNA Polymerase Directs RNA Synthesis 318

Promoters, Template Binding, and the Sigma Subunit 318 Initiation, Elongation, and Termination of RNA Synthesis 319

13.11 Transcription in Eukaryotes Differs from Prokaryotic Transcription in Several Ways 320

Initiation of Transcription in Eukaryotes 320 Recent Discoveries Concerning RNA Polymerase Function 321 Heterogeneous Nuclear RNA and Its Processing:

Caps and Tails 322

13.12 The Coding Regions of Eukaryotic Genes Are Interrupted by Intervening Sequences 323 Splicing Mechanisms: Autocatalytic RNAs 324 Splicing Mechanisms: The Spliceosome 325 RNA Editing 326

13.13 Transcription Has Been Visualized by Electron Microscopy 326

Genetics, Technology, and Society 328

Antisense Oligonucleotides: Attacking the Messenger 328

Chapter Summary 329

Insights and Solutions 329

Problems and Discussion Questions 330

Extra-Spicy Problems 331

Selected Readings 333

14 Translation and Proteins 334

14.1 Translation of mRNA Depends on Ribosomes and Transfer RNAs 335 Ribosomal Structure 335

tRNA Structure 336

Charging tRNA 337 14.2 Translation of mRNA Can Be Divided into Three Steps 338

Initiation 338

Elongation 339

Termination 340

Polyribosomes 341

14.3 Crystallographic Analysis Has Revealed Many Details about the Functional Prokaryotic Ribosome 342

14.4 Translation Is More Complex in Eukaryotes 342

14.5 The Initial Insight That Proteins Are Important in Heredity Was Provided by the Study of Inborn Errors of Metabolism 343 Phenylketonuria 344

14.6 Studies of Neurospora Led to the One-Gene: One-Enzyme Hypothesis 344

Analysis of Neurospora Mutants by Beadle and Tatum 344 Genes and Enzymes: Analysis of Biochemical Pathways 346

14.7 Studies of Human Hemoglobin Established That One Gene Encodes One Polypeptide 346 Sickle-Cell Anemia 347

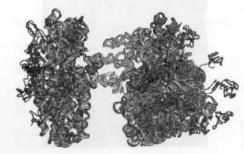
Human Hemoglobins 348

14.8 The Nucleotide Sequence of a Gene and the Amino Acid Sequence of the Corresponding Protein Exhibit Colinearity 349

14.9 Protein Structure Is the Basis of Biological Diversity 349 Posttranslational Modification 352

14.10 Protein Function Is Directly Related to the Structure of the Molecule 353

14.11 Proteins Are Made Up of One or More Functional Domains 354 Exon Shuffling and the Origin of Protein Domains 354


Genetics, Technology, and Society 356

Mad Cow Disease: The Prion Story 356

Chapter Summary 357 Insights and Solutions 357 Problems and Discussion Questions 357 Extra-Spicy Problems 358 Selected Readings 360

15 Gene Mutation, DNA Repair, and Transposition 361

15.1 Mutations Are Classified in Various Ways 362 Spontaneous, Induced, and Adaptive Mutations 362 Classification Based on Location of Mutation 363

Classification Based on Type of Molecular Change 364 Classification Based on Phenotypic Effects 364

15.2 The Spontaneous Mutation Rate Varies Greatly among Organisms 365 Deleterious Mutations in Humans 365

15.3 Spontaneous Mutations Arise from Replication Errors and Base Modifications 366 DNA Replication Errors 366 Replication Slippage 366 The Odds of Losing at Genetic Roulette 367 Tautomeric Shifts 368 Depurination and Deamination Oxidative Damage Transposons 369

15.4 Induced Mutations Arise from DNA Damage Caused by Chemicals and Radiation 369 Base Analogs 370 Alkylating Agents 370 Acridine Dyes and Frameshift Mutations 370

Ultraviolet Light and Thymine Dimers 371 Ionizing Radiation 372

15.5 Genomics and Gene Sequencing Have Enhanced Our Understanding of Mutations in Humans 372 ABO Blood Types 373 Muscular Dystrophy 373

Trinucleotide Repeats in Fragile X Syndrome, Myotonic Dystrophy, and Huntington Disease 373

15.6 Genetic Techniques, Cell Cultures, and Pedigree Analysis Are All Used to Detect Mutations 375 Detection in Bacteria and Fungi 375 Detection in Plants 375 Detection in Humans 375

15.7 The Ames Test Is Used to Assess the Mutagenicity of Compounds 377

15.8 Organisms Use DNA Repair Systems to Counteract Mutations 377

Proofreading and Mismatch Repair 377 Postreplication Repair and the SOS Repair System 378 Photoreactivation Repair: Reversal of UV Damage in Prokaryotes 379 Base and Nucleotide Excision Repair 379

Xeroderma Pigmentosum and Nucleotide Excision Repair in Humans 380 Double-Strand Break Repair in Eukarvotes 381

15.9 Transposable Elements Move within the Genome and May Disrupt Genetic Function 382 Insertion Sequences 382 Bacterial Transposons 382

Mobile Genetic Elements and Wrinkled Peas: Mendel Revisited 384

The Ac-Ds System in Maize 383

Copia Elements in Drosophila 385 P Element Transposons in Drosophila 385 Transposable Elements in Humans 386

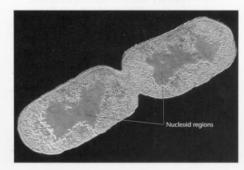
Chapter Summary 386

Genetics, Technology, and Society 387

Chernobyl's Legacy 387

Insights and Solutions 388 Problems and Discussion Questions 389 Extra-Spicy Problems 390 Selected Readings 391

16 Regulation of Gene Expression in Prokaryotes 392


16.1 Prokaryotes Exhibit Efficient Genetic Mechanisms to Respond to Environmental Conditions 393 16.2 Lactose Metabolism in E. coli Is Regulated

by an Inducible System 393 Structural Genes The Discovery of Regulatory Mutations 394 The Operon Model: Negative Control 395 Genetic Proof of the Operon Model 395 Isolation of the Repressor 397

16.3 The Catabolite-Activating Protein (CAP) Exerts Positive Control over the lac Operon 398

16.4 Crystal Structure Analysis of Repressor Complexes Has Confirmed the Operon Model 399

16.5 The tryptophan (trp) Operon in E. coli Is a Repressible Gene System Evidence for the trp Operon

- 16.6 Attenuation Is a Critical Process during the Regulation of the trp Operon in E. coli 402
- 16.7 TRAP and AT Proteins Govern Attenuation in B. subtilis 403
- 16.8 The ara Operon Is Controlled by a Regulator Protein That Exerts Both Positive and Negative Control 404

Genetics, Technology, and Society 406

Quorum Sensing: How Bacteria Talk to One Another 406

Chapter Summary 407
Insights and Solutions 407
Problems and Discussion Questions 408
Extra-Spicy Problems 409
Selected Readings 410

17 Regulation of Gene Expression in Eukaryotes 411

- 17.1 Eukaryotic Gene Regulation Differs from Regulation in Prokaryotes 412
- 17.2 Chromosome Organization in the Nucleus Influences Gene Expression 412
- 17.3 Transcription Initiation Is a Major Form of Gene Regulation 413
 Promoters Have a Modular Organization 413
 Enhancers Control the Rate of Transcription 414
- 17.4 Transcription in Eukaryotes Requires Several Steps 415

Transcription Requires Chromatin Remodeling 415 Histone Modification Is Part of Chromatin Remodeling 416

17.5 Assembly of the Basal Transcription Complex Occurs
 at the Promoter 417
 RNA Polymerases and Transcription 417
 Formation of the Transcription Initiation Complex 417
 Activators Bind to Enhancers and Change the Rate
 of Transcription Initiation 418

17.6 Gene Regulation in a Model Organism: Positive Induction and Catabolite Repression in the gal Genes of Yeast 420

- 17.7 DNA Methylation and Regulation of Gene Expression 422
- 17.8 Posttranscriptional Regulation of Gene
 Expression 423
 Alternative Splicing Pathways for mRNA 423

Alternative Splicing and Cell Function 423 Alternative Splicing Amplifies the Number of Proteins Produced by a Genome 425

RNA Silencing of Gene Expression 425

17.9 Alternative Splicing and mRNA Stability Also Regulate Gene Expression 426 Sex Determination in *Drosophila*: A Model for Regulation of Alternative Splicing 426 Controlling mRNA Stability 427

Chapter Summary 428

Genetics, Technology, and Society 429

Human Genetic Diseases and Loss of Gene Regulation 429

Insights and Solutions 430
Problems and Discussion Questions 430
Extra-Spicy Problems 432
Selected Readings 433

18 Cell Cycle Regulation and Cancer 434

18.1 Cancer Is a Genetic Disease 435

What Is Cancer? 436
The Clonal Origin of Cancer Cells 436
Cancer As a Multistep Process, Requiring Multiple
Mutations 436

18.2 Cancer Cells Contain Genetic Defects Affecting Genomic Stability and DNA Repair 437

18.3 Cancer Cells Contain Genetic Defects Affecting Cell
 Cycle Regulation 439
 The Cell Cycle and Signal Transduction 439

Cell Cycle Control and Checkpoints 440

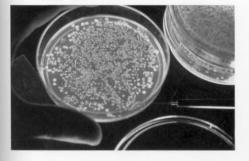
18.4 Many Cancer-Causing Genes Disrupt Control

of the Cell Cycle 442
The Cyclin D1 and Cyclin E Proto-oncogenes 443
The ras Proto-oncogenes 443
The p53 Tumor Suppressor Gene 444
The RB1 Tumor Suppressor Gene 445

- 18.5 Cancer Is a Genetic Disorder Affecting Cell-Cell Contact 446
- 18.6 Predisposition to Some Cancers Can Be Inherited 447
- 18.7 Viruses Contribute to Cancer in Both Humans and Animals 449
- 18.8 Environmental Agents Contribute to Human Cancers 451

Genetics, Technology, and Society 452

Breast Cancer: The Double-Edged Sword of Genetic Testing 452


Chapter Summary 453 Insights and Solutions 453 Problems and Discussion Questions 454 Extra-Spicy Problems 455 Selected Readings 456

Part FOUR

Genomic Analysis

19 Recombinant DNA Technology 457

- 19.1 Recombinant DNA Technology Combines Several Experimental Techniques 458
- 19.2 Recombinant DNA Technology Is the Foundation of Genome Analysis 458
- 19.3 Restriction Enzymes Cut DNA at Specific Recognition Sequences 458
- 19.4 Vectors Carry DNA Molecules to Be Cloned 460 Plasmid Vectors 460 Lambda (A) Phage Vectors 461 Cosmid Vectors 462 Bacterial Artificial Chromosomes 462 Expression Vectors 463
- 19.5 DNA Was First Cloned in Prokaryotic Host Cells 463
- 19.6 Yeast Cells Are Used as Eukaryotic Hosts for Cloning 464

19.7 Genes Can Be Transferred to Eukaryotic Cells 465 Plant Cell Hosts 465 Mammalian Cell Hosts 466

19.8 The Polymerase Chain Reaction Makes DNA Copies Without Host Cells 466 Limitations of PCR 467 Other Applications of PCR 468

19.9 Libraries Are Collections of Cloned Sequences 468 Genomic Libraries 468 Chromosome-Specific Libraries 468 cDNA Libraries 469

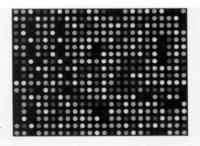
19.10 Specific Clones Can Be Recovered from a Library 470 Probes Identify Specific Clones 470

Screening a Library 471 19.11 Cloned Sequences Can Be Characterized in Several Wavs 471

Restriction Mapping 471 Nucleic Acid Blotting 473

19.12 DNA Sequencing Is the Ultimate Way to Characterize a Clone 474

DNA Sequencing and Genome Projects 477 Chapter Summary 478


Genetics, Technology, and Society 479

DNA Fingerprints and Forensics: The Case of the Telltale Palo Verde 479

Insights and Solutions 480 Problems and Discussion Questions 480 Selected Readings 483

20 Genomics and Proteomics

- 20.1 Genomics: Sequencing Is the Basis for Identifying and Mapping All Genes in a Genome 486
- 20.2 An Overview of Genomic Analysis 487 Compiling the Sequence 487 Annotating the Sequence 487
- 20.3 Functional Genomics Classifies Genes and Identifies Their Functions 488

Functional Genomics of a Bacterial Genome 489 Strategies for Functional Assignments of Unknown Genes 489

20.4 Prokaryotic Genomes Have Some Unexpected Features 491 Size Range of Eubacterial Genomes 491 Linear Chromosomes and Multiple Chromosomes in Bacteria 491

20.5 Genomes of Eubacteria 492

Genomes of Archaea 493
20.6 Eukaryotic Genomes Have Several Organizational

Patterns 493
General Features of Eukaryotic Genomes 494
Transcriptional Units in the *C. elegans* Genome 494
Genomes of Higher Plants 495

20.7 The Human Genome: The Human Genome Project (HGP) 496

Origins of the Human Genome Project 496
Major Features of the Human Genome 496
The Unfinished Tasks in Human Genome
Sequencing 497
Chromosomal Organization of Human Genes 498

Our Genome and the Chimpanzee Genome 498
20.8 Comparative Genomics Is a Versatile Tool 499

Finding New Genes Using Comparative Genomics 499
Comparative Genomics and Model Organisms 500
Comparative Analysis of Nuclear Receptors and Drug
Development 501

The Minimum Genome for Living Cells 502

20.9 Comparative Genomics: Multigene Families

Diversify Gene Function 503

Gene Duplications 503

Evolution of Gene Families: The Globin Genes 504

20.10 Proteomics Identifies and Analyzes the Proteins in a Cell 505

Reconciling the Number of Genes and the Number of Proteins 505

Proteomics Technology 506

The Bacterial Proteome Changes with Alterations in the Environment 507

Proteome Analysis of an Organelle:

The Nucleolus 508

Genetics, Technology, and Society 509

Beyond Dolly: The Cloning of Humans 509

Chapter Summary 510
Insights and Solutions 511
Problems and Discussion Questions 511
Extra-Spicy Problems 514
Selected Readings 515

21 Dissection of Gene Function: Mutational Analysis in Model Organisms 516

21.1 Geneticists Use Model Organisms That Are Genetically Tractable 517

Features of Genetic Model Organisms 517
Yeast as a Genetic Model Organism 517
Drosophila as a Genetic Model Organism 519
The Mouse as a Genetic Model Organism 521

21.2 Geneticists Dissect Gene Function Using Mutations and Forward Genetics 523

Generating Mutants with Radiation, Chemicals, and Transposon Insertion 523 Screening for Mutants 523

Selecting for Mutants 525

Defining the Genes 525

Dissecting Genetic Networks: Epistasis and Pathways 526

Extending the Analysis: Suppressors

and Enhancers 527

Extending the Analysis: Cloning the Genes 528

Extending the Analysis: Biochemical Functions 528

21.3 Geneticists Dissect Gene Function Using Genomics and Reverse Genetics 529

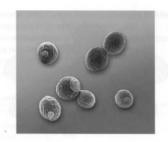
Genetic Analysis Beginning with a Purified
Protein 529

Genetic Analysis Beginning with a Mutant Model Organism 530

Genetic Analysis Beginning with the Cloned Gene 531 Genetics Analysis Using Gene Targeting Technologies 533

21.4 Geneticists Dissect Gene Function Using Functional Genomic and RNAi Technologies 536

RNAi: Genetics without Mutations 536
High-Throughput Functional Genomics Techniques 537
Gene Expression Microarrays 537
Genome-Wide Mapping of Protein–DNA Binding


Genome-Wide Mapping of Protein-DNA Binding Sites 538

21.5 Geneticists Advance Our Understanding of Molecular Processes by Undertaking Genetic Research in Model Organisms: Three Case Studies 538

Yeast: Cell Cycle Genes 539

Drosophila: The Heidelberg Screens 541

The Mouse: A Model for ALS Gene Therapy 543

Chapter Summary 544
Insights and Solutions 545
Problems and Discussion Questions 546
Extra-Spicy Problems 547
Selected Readings 548

22 Applications and Ethics of Biotechnology 549

Biotechnology Has Revolutionized Agriculture 550
 Transgenic Crops and Herbicide Resistance 550
 Nutritional Enhancement of Crop Plants 550
 Concerns about Genetically Modified Organisms 551

in Genetically Altered Organisms 552
Insulin Production in Bacteria 552
Transgenic Animal Hosts and Pharmaceutical
Products 553

Transgenic Plants and Edible Vaccines 554

22.3 Biotechnology Is Used to Diagnose and Screen Genetic Disorders 555

> Prenatal Diagnosis of Sickle-cell Anemia 555 Single-Nucleotide Polymorphisms and Genetic Screening 556

DNA Microarrays 557

Drug Development 558

Disease Diagnosis 559

Genome Scanning 559

Genetic Testing and Ethical Dilemmas 560

22.4 Genetic Disorders Can Be Treated by Gene Therapy 560

Gene Therapy for Severe Combined Immunodeficiency (SCID) 561

Problems and Failures in Gene Therapy 562
The Future of Gene Therapy 562

22.5 Gene Therapy Raises Many Ethical Concerns 563

22.6 Ethical Issues Are an Outgrowth of the Human Genome Project 563

The Ethical, Legal, and Social Implications (ELSI) Program 564

Program 564

22.7 Finding and Mapping Genes in the Human Genome with Recombinant DNA Technology 564
RFLPs as Genetic Markers 564
Linkage Analysis Using RFLPs 565

Positional Cloning: The Gene for

Neurofibromatosis 565

Fluorescent in situ Hybridization (FISH) Gene Mapping 566

22.8 DNA Fingerprints Can Identify Individuals

Minisatellites (VNTRs) and Microsatellites
(STRs) 567

Forensic Applications 568

Genetics, Technology, and Society 569

Gene Therapy—Two Steps Forward or Two Steps Back? 569

Chapter Summary 570
Insights and Solutions 570
Problems and Discussion Questions 573
Extra-Spicy Problems 573
Selected Readings 574

Part Five

Genetics of Organisms and Populations

- 23 Developmental Genetics of Model Organisms 575
- 23.1 Developmental Genetics Seeks to Explain How a Differentiated State Develops from an Organism's Genome 576
- 23.2 Conservation of Developmental Mechanisms and the Use of Model Organisms 577

 Model Organisms in the Study of Development 577

 Analysis of Developmental Mechanisms 577

 Basic Concepts in Developmental Genetics 577
- 23.3 Master Switch Genes Program Genomic
 Expression 578
 The Control of Eye Formation 578
- 23.4 Genetics of Embryonic Development in *Drosophila*:
 Specification of the Body Axis 579
 Overview of *Drosophila* Development 579
 Genes That Regulate Formation of the Anterior–Posterior Body Axis 581

Genetic Analysis of Embryogenesis 581

23.5 Zygotic Genes Program Segment Formation in *Drosophila* 583

Gap Genes 583 Pair-Rule Genes 584 Sagment Polarity Gene

Segment Polarity Genes 584

23.6 Homeotic Genes Control the Developmental Fate of Segments along the Anterior-Posterior Axis 585 Hox Genes in Drosophila 585

Hox Genes and Human Genetic Disorders
Control of Hox Gene Expression 587

23.7 Cascades of Gene Action Control

Differentiation 588

23.8 Plants Have Evolved Systems That Parallel the Hox
Genes of Animals 589

Homeotic Genes in Arabidopsis 589 Evolutionary Divergence in Homeotic Genes 590

23.9 Cell–Cell Interactions in C. elegans Development 590

> Signaling Systems in Development 590 The Notch Signaling Pathway 591

Overview of *C. elegans* Development 591 Genetic Analysis of Vulva Formation 592

23.10 Programmed Cell Death Is Required for Normal Development 594

Genetics, Technology, and Society 595

Stem Cell Wars 595

Chapter Summary 596

Insights and Solutions 596

Problems and Discussion Questions 597 Extra-Spicy Problems 598

Selected Readings 598

24 Quantitative Genetics and Multifactorial Traits 599

24.1 Not All Polygenic Traits Show Continuous Variation 600

24.2 Quantitative Traits Can Be Explained in Mendelian Terms 600

The Multiple Gene Hypothesis for Quantitative Inheritance 601

Additive Alleles: The Basis of Continuous

Variation 602

Calculating the Number of Polygenes 602

24.3 The Study of Polygenic Traits Relies on Statistical Analysis 603

> The Mean 603 Variance 603

Standard Deviation 604

Standard Error of the Mean 604

Covariance 604

Analysis of a Quantitative Character 604

24.4 Heritability Estimates the Genetic Contribution to Phenotypic Variability 605

Broad-Sense Heritability 606 Narrow-Sense Heritability 606 Artificial Selection 607

24.5 Twin Studies Allow an Estimation of Heritability in Humans 608

24.6 Quantitative Trait Loci Can Be Mapped 609

Chapter Summary 610

Genetics, Technology, and Society 611

The Green Revolution Revisited 611

Insights and Solutions 612
Problems and Discussion Questions 613
Extra-Spicy Problems 614
Selected Readings 616

25 Population Genetics 617

25.1 Allele Frequencies in Population Gene Pools Vary in Space and Time 618

25.2 The Hardy-Weinberg Law Describes the Relationship between Allele Frequencies and Genotype Frequencies in an Ideal Population 618

25.3 The Hardy-Weinberg Law Can Be Applied to Human Populations 620 Testing for Hardy-Weinberg Equilibrium 622

25.4 The Hardy-Weinberg Law Can Be Used for Multiple Alleles, X-Linked Traits, and Estimating Heterozygote Frequencies 622 Calculating Frequencies for Multiple Alleles 622

Calculating Frequencies for X-linked Traits 623
Calculating Heterozygote Frequency 624

25.5 Natural Selection Is a Major Force Driving Allele Frequency Change 624

Natural Selection 624

Fitness and Selection 625 Selection in Natural Populations 627

Natural Selection and Quantitative Traits 628

25.6 Mutation Creates New Alleles in a Gene Pool 629

25.7 Migration and Gene Flow Can Alter Allele Frequencies 630

- 25.8 Genetic Drift Causes Random Changes in Allele Frequency in Small Populations 632
- 25.9 Nonrandom Mating Changes Genotype Frequency
 but Not Allele Frequency 632
 Inbreeding 633
 Genetic Effects of Inbreeding 634

Genetics, Technology, and Society 635

Tracking Our Genetic Footprints out of Africa 635

Chapter Summary 636
Insights and Solutions 636
Problems and Discussion Questions 637
Extra-Spicy Problems 638
Selected Readings 638

26 Evolutionary Genetics 640

- 26.1 Speciation Can Occur by Transformation or by Splitting Gene Pools 641
- Genetic Variation 642
 Artificial Selection 642
 Protein Polymorphisms 642
 Variations in Nucleotide Sequence 643
 Explaining the High Level of Genetic Variation in Populations 644

26.2 Most Populations and Species Harbor Considerable

- 26.3 The Genetic Structure of Populations Changes across Space and Time 644
- 26.4 The Definition of Species Is a Great Challenge for Evolutionary Biology 647
 26.5 A Reduction in Gene Flow between Populations.
- Accompanied by Divergent Selection or Genetic Drift, Can Lead to Speciation 647

 Examples of Speciation 649

 The Minimum Genetic Divergence Required for Speciation 649

 In at Least Some Instances, Speciation Is Rapid 651
- 26.6 We Can Use Genetic Differences among Populations or Species to Reconstruct Evolutionary History 653 A Method for Estimating Evolutionary Trees from Genetic Data 653 Molecular Clocks 655
- 26.7 Reconstructing Evolutionary History Allows Us
 to Answer a Variety of Questions 656
 Transmission of HIV from a Dentist to His
 Patients 656
 The Relationship of Neanderthals to Modern
 Humans 657
 The Origin of Mitochondria 657

Chapter Summary 658

Genetics, Technology, and Society 659

What Can We Learn from the Failure of the Eugenics Movement? 659

Insights and Solutions 660
Problems and Discussion Questions 660
Extra-Spicy Problems 661
Selected Readings 662

27 Conservation Genetics 663

- 27.1 Genetic Diversity Is at the Heart of Conservation Genetics 664 Loss of Genetic Diversity 665
 - Identifying Genetic Diversity 666
- 27.2 Population Size Has a Major Impact on Species Survival 666
- 27.3 Genetic Effects Are More Pronounced in Small, Isolated Populations 668 Genetic Drift 668 Inbreeding 668 Reduction in Gene Flow 669
- 27.4 Genetic Erosion Diminishes Genetic Diversity 670 27.5 Conservation of Genetic Diversity Is Essential
- to Species Survival 670

 Ex Situ Conservation: Captive Breeding 671
 Captive Breeding: The Black-Footed Ferret 671

 Ex Situ Conservation and Gene Banks 672
 In Situ Conservation 672
 Population Augmentation 673

Genetics, Technology, and Society 674

Gene Pools and Endangered Species: The Plight of the Florida Panther 674

Chapter Summary 675
Insights and Solutions 675
Problems and Discussion Questions 675
Extra-Spicy Problems 676
Selected Readings 677

Appendix A Glossary A-1
Appendix B Answers A-17
Credits C-1
Index I-1