Strain Measurements and Stress Analysis Akhtar S. Khan Xinwei Wang ## **Contents** | | FOREWORD | is | |-----------|--|----------| | | PREFACE | х | | | ABOUT THE AUTHORS | xii | | CHAPTER 1 | STRESS, STRAIN, AND STRESS-STRAIN RELATIONSHIPS | : | | | 1.1. Introduction 1 1.2. Stress 1 1.3. Two-Dimensional Stress State at a Point 4 1.4. Principal Stresses 7 1.5. Mohr's Stress Circle 11 1.6. Differential Equations of Equilibrium 13 1.7. Strain and Displacement 17 1.8. Principal Strains and Mohr's Strain Circle 19 1.9. Stress-Strain Relations 24 Problems 27 References 29 | | | CHAPTER 2 | METAL-FOIL RESISTANCE STRAIN GAGES | 3(| | | | 39
47 | | Conte | vi | |-------|----| | CI | | | | | | | | | | | | | Problems 52
References 55 | | |-----------|--|-----| | CHAPTER 3 | STRAIN GAGE CIRCUITRY, TRANSDUCERS,
AND DATA ANALYSIS | 56 | | | 3.1. Introduction 56 3.2. Wheatstone Bridge 56 3.3. Correction for Long Lead Wires 68 3.4. Strain Gage Transducers 71 3.5. Strain Gage Rosette Data Analysis and Correction 74 3.6. Correction for Wheatstone Bridge Nonlinearity 82 3.7. Gage Factor for Finite Deformation 85 3.8. Shunt Resistance Calibration 86 3.9. Potentiometer Circuit 87 | | | | Problems 88
References 93 | | | CHAPTER 4 | PHOTOELASTICITY | 94 | | | 4.1. Introduction 944.2. Review of the Nature of Light and Wave
Representation 94 | | | | 4.3. Polarization of Light 98 | | | | 4.4. Wave Plate and the Principle of Photoelasticity 99 | | | | 4.5. Analysis of a Stressed Plate in a Plane Polariscope 102 | | | | 4.6. Analysis of a Stressed Plate in a Circular Polariscope 106 | | | | 4.7. Tardy Method 113 | | | | 4.8. Calibration Methods 117 | | | | 4.9. Determination of Whole-Field Isoclinic Fringe Patterns 120 | | | | 4.10. Separation of Principal Stresses 123 | | | | 4.11. Relationship between Stresses in Models and Actual Structures 137 | | | | 4.12. Materials for Photoelastic Models 1384.13. Advanced Photoelasticity 140 | | | | Problems 141
References 148 | | | CHAPTER 5 | PHOTOELASTIC-COATING METHOD | 149 | Introduction 149 Reflection Polariscope 150 5.1. 5.2. *5*6 94 | | Applications 152 4. Stress- or Strain-Optic Law for Coatings 153 5. Calibration of Photoelastic Coating 156 Principal Strain Separation Methods 158 7. Coating Sensitivity and Selections 166 8. Coating Applications 170 | | |-----------|--|-------| | | roblems 170
Leferences 173 | | | CHAPTER 6 | EOMETRIC MOIRÉ TECHNIQUES IN STRAIN ANALYSIS | 174 | | | Introduction 174 Fundamental Property of Moiré Fringes 174 Geometrical Method of Moiré Fringe Analysis in Tw
Dimensions 178 Displacement Method of Moiré Fringe Analysis in T
Dimensions 182 Instrumentation 190 Out-of-plane Displacement Measurements 192 | | | | .7. Out-of-plane Slope Measurements 195 .8. Grating and their Applications 198 roblems 200 deferences 202 | | | CHAPTER 7 | IOLOGRAPHIC INTERFEROMETRY | 204 | | | Introduction 204 Interference and Diffraction 204 Wavefront Recording and Reconstruction by Holography 206 Displacement Measurement by Holographic Interferometry 211 Vibration Analysis by Time-Average Holography 2 Basic Equipment and Technique for Making a Hologram 219 Comparative Holographic Interferometry 220 | 216 | | | roblems 222
References 223 | | | CHAPTER 8 | COMPUTER DATA ACQUISITION AND CONTROL SYSTEM | 1 224 | | | Introduction 224Basics of a Computer Data Acquisition and Control System 224 | | ## viii Contents | 8.3. | Components of a Computer Data Acquisition | | | |--------|---|-----|--| | | and Control System 226 | | | | 8.4. | Analog Signal Input and Output Channels | 229 | | | 8.5. | Interface for a Computer Data Acquisition | | | | | and Control System 241 | | | | 8.6. | Summary Remarks 242 | | | | Proble | ems 243 | | | | Refer | rences 243 | | | INDEX 245