Michael Norton and Denis Karczub

Fundamentals
of Noise and
Vibration Analysis
for Engineers

Second Edition

CAMBRIDGE

Contents

Preface	page xv
Acknowledgements	xvii
Introductory comments	xviii
Mechanical vibrations: a review of so	ome fundamentals 1
1.1 Introduction	1
1.2 Introductory wave motion concepts - an	elastic continuum viewpoint 3
1.3 Introductory multiple, discrete, mass-spi	ring-damper oscillator concepts -
a macroscopic viewpoint	8
1.4 Introductory concepts on natural frequen	cies, modes of vibration, forced
vibrations and resonance	10
1.5 The dynamics of a single oscillator – a co	onvenient model 12
1.5.1 Undamped free vibrations	12
1.5.2 Energy concepts	15
1.5.3 Free vibrations with viscous damp	ing 16
1.5.4 Forced vibrations: some general co	omments 21
1.5.5 Forced vibrations with harmonic e	xcitation 22
1.5.6 Equivalent viscous-damping conce	epts – damping in real systems 30
1.5.7 Forced vibrations with periodic ex-	citation 32
1.5.8 Forced vibrations with transient ex	
1.6 Forced vibrations with random excitation	n 37
1.6.1 Probability functions	38
1.6.2 Correlation functions	39
1.6.3 Spectral density functions	41
1.6.4 Input-output relationships for line	
1.6.5 The special case of broadband exc	-
1.6.6 A note on frequency response fund	
1.7 Energy and power flow relationships	52

1.8	Multip	le oscillators – a review of some general procedures	56
	1.8.1	A simple two-degree-of-freedom system	56
	1.8.2	A simple three-degree-of-freedom system	59
	1.8.3	Forced vibrations of multiple oscillators	60
1.9		nuous systems – a review of wave-types in strings, bars and plates	64
2.,,	1.9.1	The vibrating string	64
	1.9.2	Quasi-longitudinal vibrations of rods and bars	72
	1.9.3	Transmission and reflection of quasi-longitudinal waves	77
	1.9.4	Transverse bending vibrations of beams	79
	1.9.5	A general discussion on wave-types in structures	84
		Mode summation procedures	85
		The response of continuous systems to random loads	91
		Bending waves in plates	94
1.10		onships for the analysis of dynamic stress in beams	96
		Dynamic stress response for flexural vibration of a thin beam	96
		Far-field relationships between dynamic stress and structural	
		vibration levels	100
	1.10.3	Generalised relationships for the prediction of maximum	
		dynamic stress	102
	1.10.4	Properties of the non-dimensional correlation ratio	103
		Estimates of dynamic stress based on static stress and	
		displacement	104
	1.10.6	Mean-square estimates for single-mode vibration	105
		Relationships for a base-excited cantilever with tip mass	106
1.11		onships for the analysis of dynamic strain in plates	108
		Dynamic strain response for flexural vibration of a constrained	
		rectangular plate	109
	1.11.2	2 Far-field relationships between dynamic stress and structural	
		vibration levels	112
	1.11.3	Generalised relationships for the prediction of maximum	
		dynamic stress	113
1.12	Relati	ionships for the analysis of dynamic strain in cylindrical shells	113
_,		Dynamic response of cylindrical shells	114
		2 Propagating and evanescent wave components	117
		3 Dynamic strain concentration factors	119
		4 Correlations between dynamic strain and velocity spatial	
		maxima	119
	Refer		122
	•	enclature	123

2	Sound waves: a review of some fundamentals	128
	2.1 Introduction	128
	2.2 The homogeneous acoustic wave equation – a classical analysis	131
	2.2.1 Conservation of mass	134
	2.2.2 Conservation of momentum	136
	2.2.3 The thermodynamic equation of state	139
	2.2.4 The linearised acoustic wave equation	140
	2.2.5 The acoustic velocity potential	141
	2.2.6 The propagation of plane sound waves	143
	2.2.7 Sound intensity, energy density and sound power	144
	2.3 Fundamental acoustic source models	146
	2.3.1 Monopoles – simple spherical sound waves	147
	2.3.2 Dipoles	151
	2.3.3 Monopoles near a rigid, reflecting, ground plane	155
	2.3.4 Sound radiation from a vibrating piston mounted in a rigid baffle	157
	2.3.5 Quadrupoles – lateral and longitudinal	162
	2.3.6 Cylindrical line sound sources	164
	2.4 The inhomogeneous acoustic wave equation – aerodynamic sound	165
	2.4.1 The inhomogeneous wave equation	167
	2.4.2 Lighthill's acoustic analogy	174
	2.4.3 The effects of the presence of solid bodies in the flow	177
	2.4.4 The Powell–Howe theory of vortex sound	180
	2.5 Flow duct acoustics	183
	References	187
	Nomenclature	188
3	Interactions between sound waves and solid structures	193
	3.1 Introduction	193
	3.2 Fundamentals of fluid-structure interactions	194
	3.3 Sound radiation from an infinite plate – wave/boundary matching	25.
	concepts	197
	3.4 Introductory radiation ratio concepts	203
	3.5 Sound radiation from free bending waves in finite plate-type structures	207
	3.6 Sound radiation from regions in proximity to discontinuities – point and	_0,
	line force excitations	216
	=======================================	

•		
CO	nte	mr

	3.7	Radiation ratios of finite structural elements	221
	3.8	Some specific engineering-type applications of the reciprocity principle	227
	3.9	Sound transmission through panels and partitions	230
		3.9.1 Sound transmission through single panels	232
		3.9.2 Sound transmission through double-leaf panels	241
	3.10	The effects of fluid loading on vibrating structures	244
	3.11	Impact noise	247
		References	249
		Nomenclature	250
•	– Nois –	se and vibration measurement and control procedures	254
	4.1	Introduction	254
	4.2	Noise and vibration measurement units – levels, decibels and spectra	256
		4.2.1 Objective noise measurement scales	256
		4.2.2 Subjective noise measurement scales	257
		4.2.3 Vibration measurement scales	259
		4.2.4 Addition and subtraction of decibels	261
		4.2.5 Frequency analysis bandwidths	263
	4.3	Noise and vibration measurement instrumentation	267
		4.3.1 Noise measurement instrumentation	267
		4.3.2 Vibration measurement instrumentation	270
	4.4	Relationships for the measurement of free-field sound propagation	273
	4.5	The directional characteristics of sound sources	278
	4.6	Sound power models – constant power and constant volume sources	279
	4.7	The measurement of sound power	282
		4.7.1 Free-field techniques	282
		4.7.2 Reverberant-field techniques	283
		4.7.3 Semi-reverberant-field techniques	287
		4.7.4 Sound intensity techniques	290
	4.8	Some general comments on industrial noise and vibration control	294
		4.8.1 Basic sources of industrial noise and vibration	294
		4.8.2 Basic industrial noise and vibration control methods	295
		4.8.3 The economic factor	299
	4.9	Sound transmission from one room to another	301
	4.10	Acoustic enclosures	304
	4.11	Acoustic barriers	308
	4.12	Sound-absorbing materials	313
	4.13	Vibration control procedures	320

		4.13.1 Low frequency vibration isolation – single-degree-of-freedom	
		systems	322
		4.13.2 Low frequency vibration isolation – multiple-degree-of-freedom	225
		systems	325
		4.13.3 Vibration isolation in the audio-frequency range4.13.4 Vibration isolation materials	327
		4.13.5 Dynamic absorption	330
		4.13.6 Damping materials	332 334
		References	
		Nomenclature	335 336
5	The	e analysis of noise and vibration signals	342
	5.1	Introduction	342
	5.2	Deterministic and random signals	344
	5.3	Fundamental signal analysis techniques	347
		5.3.1 Signal magnitude analysis	347
		5.3.2 Time domain analysis	351
		5.3.3 Frequency domain analysis	352
		5.3.4 Dual signal analysis	355
	5.4	Analogue signal analysis	365
	5.5	Digital signal analysis	366
	5.6	Statistical errors associated with signal analysis	370
		5.6.1 Random and bias errors	370
		5.6.2 Aliasing	372
		5.6.3 Windowing	374
	5.7	Measurement noise errors associated with signal analysis	377
		References	380
		Nomenclature	380
6	— Sta	tistical energy analysis of noise and vibration	383
		indical chorgy analysis of holos and vibration	202
	6.1	Introduction	383
	6.2	The basic concepts of statistical energy analysis	384
	6.3	Energy flow relationships	387
		6.3.1 Basic energy flow concepts	388
		6.3.2 Some general comments	389
		6.3.3 The two subsystem model	391

		6.3.4 <i>In-situ</i> estimation procedures	393
		6.3.5 Multiple subsystems	395
	6.4	Modal densities	397
		6.4.1 Modal densities of structural elements	397
		6.4.2 Modal densities of acoustic volumes	400
		6.4.3 Modal density measurement techniques	401
	6.5	Internal loss factors	407
		6.5.1 Loss factors of structural elements	408
		6.5.2 Acoustic radiation loss factors	410
		6.5.3 Internal loss factor measurement techniques	412
	6.6	Coupling loss factors	417
		6.6.1 Structure–structure coupling loss factors	417
		6.6.2 Structure–acoustic volume coupling loss factors	419
		6.6.3 Acoustic volume–acoustic volume coupling loss factors	420
		6.6.4 Coupling loss factor measurement techniques	421
	6.7	Examples of the application of S.E.A. to coupled systems	423
		6.7.1 A beam-plate-room volume coupled system	424
		6.7.2 Two rooms coupled by a partition	427
		Non-conservative coupling – coupling damping	430
	6.9	The estimation of sound radiation from coupled structures using total	
		loss factor concepts	431
	6.10	Relationships between dynamic stress and strain and structural vibration	
		levels	433
		References	435
		Nomenclature	437
7	– Pipo	e flow noise and vibration: a case study	441
	 7.1	Introduction	441
	7.2	General description of the effects of flow disturbances on pipeline noise	
		and vibration	443
	7.3	The sound field inside a cylindrical shell	446
	7.4	Response of a cylindrical shell to internal flow	451
		7.4.1 General formalism of the vibrational response and sound	
		radiation	451
		7.4.2 Natural frequencies of cylindrical shells	454
		7.4.3 The internal wall pressure field	455
		7.4.4 The joint acceptance function	458
		7.4.5 Radiation ratios	460

		ncidence - vibrational response and sound radiation due to higher	
		er acoustic modes	461
		er pipe flow noise sources	467
		liction of vibrational response and sound radiation characteristics	471
		ne general design guidelines	477
		ibration damper for the reduction of pipe flow noise and vibration	479
	•	erences	481
	Non	nenclature	483
}	Noise a	and vibration as a diagnostic tool	488
	8.1 Intro	oduction	488
	8.2 Som	ne general comments on noise and vibration as a diagnostic tool	489
	8.3 Rev	iew of available signal analysis techniques	493
	8.3.	Conventional magnitude and time domain analysis techniques	494
	8.3.2	2 Conventional frequency domain analysis techniques	501
	8.3.3	3 Cepstrum analysis techniques	503
	8.3.4	1 · · · · · · · · · · · · · · · · · · ·	504
	8.3.	5 Other advanced signal analysis techniques	507
	8.3.0	1	511
	8.4 Sour	rce identification and fault detection from noise and vibration	
	sign	als	513
	8.4.1	l Gears	514
	8.4.2	2 Rotors and shafts	516
	8.4.3	Bearings	518
	8.4.4	Fans and blowers	523
	8.4.5	5 Furnaces and burners	525
	8.4.6	5 Punch presses	527
	8.4.7	7 Pumps	528
	8.4.8	B Electrical equipment	530
	8.4.9	Source ranking in complex machinery	532
	8.4.1	10 Structural components	536
	8.4.	11 Vibration severity guides	539
	8.5 Som	e specific test cases	541
	8.5.1	Cabin noise source identification on a load-haul-dump vehicle	541
	8.5.2	Noise and vibration source identification on a large induction	
		motor	547
	8.5.3	B Identification of rolling-contact bearing damage	550
	8.5.4	Flow-induced noise and vibration associated with a gas pipeline	554

	•	
8.5.5	Flow-induced noise and vibration associated with a racing	
	sloop (yacht)	557
8.6 Perfor	mance monitoring	557
8.7 Integr	ated condition monitoring design concepts	559
Refere	ences	562
Nome	nclature	563
Problems		566
Appendix 1: Relevant engineering noise and vibration control journals		599
Appendix	2: Typical sound transmission loss values and sound absorption	
	coefficients for some common building materials	600
Appendix	3: Units and conversion factors	603
Appendix	Appendix 4: Physical properties of some common substances	
Answers to	o problems	607
Index		621