

AXIONATIC QUALITY

INTEGRATING AXIOMATIC DESIGN WITH SIX-SIGMA, RELIABILITY, AND QUALITY ENGINEERING

BASEM SAID EL-HAIK

With a Foreword by Nam P. Suh

CONTENTS

FOREWORD PREFACE			xiii
			χv
1	INTR	ODUCTION TO THE AXIOMATIC QUALITY PROCESS	. 1
	1.1	Why Axiomatic Quality?	1
	1.2	Goals and Scope of the Book	3
	1.3	Axiomatic Design	3
	1.4	Six-Sigma and Design for Six-Sigma Philosophy	9
		1.4.1 Introduction to Design for Six-Sigma	11
	1.5	Robustness Engineering: Taguchi's Quality Engineering	12
	1.6	Problems Addressed by Axiomatic Quality	15
	1.7	Introduction to the Axiomatic Quality Process	16
	1.8	Axiomatic Quality in Product Development	17
	1.9	Summary	19
2	AXIC	MATIC DESIGN METHOD	21
	2.1	Introduction	21
	2.2	Axiomatic Design Method	24
		2.2.1 Design Domains	25
		2.2.2 Design Hierarchy and Zigzagging Process	27

viii CONTENTS

		Acclaro DFSS Light®	
		ftp://ftp.wiley.com/public/sci_tech_med/axiomatic_quality/	27
	2.3	Introduction to the Independence Axiom	29
	2.4	Introduction to the Information Axiom	30
	2.5	Axiomatic Design Theorems and Corollaries	32
		2.5.1 Axiomatic Design Corollaries	33
		2.5.2 Axiomatic Design Theorems of General Design	34
		2.5.3 Theorems for Design of Large Systems	36
	2.6	Case Study: Depth Charge Initiator (Nordlund, 1996)	36
	2.7	Summary	43
3	INDE	EPENDENCE AXIOM	44
	3.1	Introduction	44
	3.2	Independence Axiom and the Zigzagging Approach	46
		3.2.1 Coupling Measures	48
	3.3	Design Mappings and Design Structures	49
	3.4	Case Study 1: Axiomatic Design of a Water Faucet (Swenson and Nordlund, 1995)	50
	3.5	Case Study 2: Implementation Methodology for Transition from Traditional to Cellular Manufacturing Using Axiomatic Design (Durmusoglu et al., 2002)	55
	2.0	3.5.1 Axiomatically Driven Cellular Manufacturing System	56
	3.6	Summary	60
4	INFO	RMATION AXIOM AND DESIGN COMPLEXITY	62
	4.1	Introduction	62
	4.2	Traditional Formulation of the Information Axiom:	
		Suh's Definition	64
	4.0	4.2.1 Complexity Reduction Techniques	65
	4.3	Complexity Vulnerability	71
	4.4	Theoretical Foundation of the New Complexity Theory	72
	4.5	New Complexity Theory	74
	16	4.5.1 Coupled Design Complexity	76
	4.6 4.7	Complexity Due to Statistical Correlation	77
		Summary	83
5	QUA	LITY ENGINEERING: AXIOMATIC PERSPECTIVE	85
	5.1	Introduction	85

		CONTENTS	IX
	5.2	Robust Design (Quality Engineering): Overview	86
	5.3	Mathematical Relationship between the Quality Loss Function and Axiomatic Measures	88
	5.4	Mathematical Relationship between the Quality Loss Function	02
		and Axiomatic Measures of Higher Modularity	92 95
		5.4.1 Equal Variance5.4.2 Equal Sensitivity	95
	5.5	Estimation of the Expected Loss Function	102
	5.5 5.6	Mathematical Relationship between the Signal-to-Noise Ratio	104
	5.0	and Axiomatic Measures	103
	5.7	Summary	104
6	AXIO	MATIC QUALITY AND RELIABILITY PROCESS	106
	6.1	Introduction	106
	6.2	Axiomatic Quality Process	108
		6.2.1 Why the Axiomatic Quality Process?	109
		6.2.2 Axiomatic Quality Process Map	112
		6.2.3 Axiomatic Quality Design Team	114
	6.3	Customer Attributes-to-FRs Mapping: Understanding the Voice of the Customer	115
		6.3.1 QFD Stage 1	121
		6.3.2 QFD Stage 2	123
	6.4	Conceptual Design for Capability Phase	125
		6.4.1 Define FR Specification Target Values and Allowable Tolerances	125
	6.5	Option A: Conceptual Design for the Capability Phase of an	122
	0.0	Incremental Design	126
		6.5.1 Step A.1: Perform the Physical Mapping (Design Analysis)	127
		6.5.2 Step A.2: Perform the Physical Mapping (Design	
		Synthesis)	128
		6.5.3 Step A.3: Uncouple or Decouple the Design	131
		Mappings 6.5.4 Step A.4: Conduct Axiomatic Quality Concept	131
		Selection	131
		6.5.5 Step A.5: Detail the Structures	132
		6.5.6 Step A.6: Prepare for the Optimization Phase of the	400
	6.6	Structure Selected	133
	6.6	Option B: Conceptual Design for the Capability Phase of a Creative Design	135
		6.6.1 Step B.1: Define the Pursuit Ideal Product	135

		6.6.2 Step B.2: Understand and Project Product	10.
		Evolution 6.6.3 Step B.3: Initial Concept Generation	136
	6.7	6.6.3 Step B.3: Initial Concept Generation Axiomatic Quality Optimization Phase	137
	6.8	Axiomatic Quality Process Deployment	138
	0.0	Axiomatic Quanty Process Deployment	139
7		MATIC QUALITY PROCESS CONCEPT SELECTION	
	PRO	CESS	145
	7.1	Introduction	145
	7.2	Design Feasibility in Axiomatic Quality	147
		7.2.1 Modules	147
		7.2.2 Design Technical (Morphological) Feasibility	148
	7.3	Concept Selection Problem	151
	7.4	Concept Selection Fuzzy Modeling	155
		7.4.1 Fuzzy Concepts	155
		7.4.2 Possibility-Probability Consistency Principle	156
		7.4.3 Maximum Entropy Formulation	157
	7.5	Axiomatic Quality Fuzzy Concept Selection	
		Formulation	160
		7.5.1 Case Study: Global Commercial Process	161
	7.6	Summary	170
8	CON	CEPTUAL DESIGN FOR CAPABILITY PHASE	171
	8.1	Introduction	171
	8.2	Problems That Can Be Solved by Axiomatic Quality	172
	8.3	Conceptual Design for the Capability Phase	173
		8.3.1 Implication of Coupling in the CDFC Phase	174
		8.3.2 Step A.3: Uncouple or Decouple the Design	
		Mappings	17 7
	8.4	Case Study: Transmission Vane Oil Pump CDFC	181
		8.4.1 Pump Zigzagging Process	183
		8.4.2 Decoupling Phase	189
		8.4.3 Step A.5: Detail the Design	190
	8.5	Theory of Inventive Problem Solving	192
		8.5.1 TRIZ in the Axiomatic Quality Process	194
	8.6	Summary	197
		Appendix 8A: Design Matrixes	197

9	AXIO	MATIC QUALITY OPTIMIZATION PHASE	201
	9.1	Introduction	201
	9.2	Axiomatic Quality Operational Vulnerability Optimization	203
		9.2.1 Vulnerability Optimization Routine	205
	9.3	Parameter Design Optimization	209
		9.3.1 Noise Factors Identification	210
		9.3.2 Parameter Design Optimization DOEs	211
		9.3.3 Data Collection and Results Analysis	212
		9.3.4 Case Study: Axiomatic Quality Parameter Design	213
	9.4	Axiomatic Quality Strategy in the Tolerance Optimization Phase	218
		9.4.1 Robustness at Six-Sigma Quality: Signal-to-Noise Ratio and Quality Loss Function	219
	9.5	Design Operational Vulnerability Optimization Using	
		Tolerances of Uni-FR Design Modules	224
		9.5.1 Coupling Vulnerability Constraint	226
		9.5.2 Meaning of the Solution	227
	9.6	Design Operational Vulnerability Optimization Using Tolerances of an FR Array	228
	9.7	Summary	231
		Appendix 9A: Proof of Theorem 9.1	231
10		E STUDY: LOW-PASS FILTER AXIOMATIC QUALITY CESS	233
	10.1	Introduction	233
	10.2	Problem Statement	234
	10.3	Passive Filter Conceptual Design for the Capability Phase	235
	10.4	Passive Filter Tolerance Optimization Phase	238
11	AXIO	DMATIC RELIABILITY	243
	11.1	Introduction	243
	11.2	Why Axiomatic Reliability?	245
	11.3	Axiomatic Reliability in the Development Cycle	246
	11.4	Axiomatic Reliability in the Design Stages	247
		11.4.1 Linear, Independent, Uncoupled Design	256
		11.4.2 Linear, Independent, Decoupled Design	258

xii CONTENTS

11.5	Case Study: Passive Filter Design	260
11.6	Physical Structure Axiomatic Reliability Formulation	265
	11.6.1 Time-Dependent Physical Structure Axiomatic Reliability Assessment	267
11.7	Physical Structure Axiomatic Importance Formulation	269
	11.7.1 Structured Modules	269
11.8	Design for Reliability	270
11.9	Summary	272
REFERENCES		273
INDEX		