International Student Edition

Contents

1. Introduction to Modeling and Decision Analysis 1

Introduction 1

The Modeling Approach to Decision Making 2
Characteristics and Benefits of Modeling 4
Mathematical Models 5
Categories of Mathematical Models 7
The Problem-Solving Process 8
Anchoring and Framing Effects 11
Good Decisions vs. Good Outcomes 12
Summary 13
References 13
The World of Management Science 14
Questions and Problems 16

2. Introduction to Optimization and Linear Programming 17

Introduction 17

Applications of Mathematical Optimization 18 Characteristics of Optimization Problems 18

Expressing Optimization Problems Mathematically 19

Decisions 19 Constraints 20 Objective 20

Mathematical Programming Techniques 21

An Example LP Problem 21

Formulating LP Models 22

Steps in Formulating an LP Model 22

Summary of the LP Model for the Example Problem 23

The General Form of an LP Model 24

Solving LP Problems: An Intuitive Approach 25

Solving LP Problems: A Graphical Approach 26

Plotting the First Constraint 26 Plotting the Second Constraint 27 Plotting the Third Constraint 29 The Feasible Region 30 Plotting the Objective Function 30 Finding the Optimal Solution Using Level Curves 32 Finding the Optimal Solution by Enumerating the Corner Points 33 Summary of Graphical Solution to LP Problems 33

Special Conditions in LP Models 34

Alternate Optimal Solutions 35 Redundant Constraints 35 Unbounded Solutions 37 Infeasibility 39

Summary 40

References 40

Questions and Problems 41

3. Modeling and Solving LP Problems in a Spreadsheet 45

Introduction 45

Spreadsheet Solvers 46

Solving LP Problems in a Spreadsheet 46

The Steps in Implementing an LP Model in a Spreadsheet 47

A Spreadsheet Model for the Blue Ridge Hot Tubs Problem 48

Organizing the Data 48 Representing the Decision Variables 49 Representing the Objective Function 49 Representing the Constraints 50 Representing the Bounds on the Decision Variables 51

How Solver Views the Model 52

Using Solver 54

Defining the Set (or Target) Cell 56 Defining the Variable Cells 57 Defining the Constraint Cells 58 Defining the Nonnegativity Conditions 59 Reviewing the Model 60 Options 60 Solving the Model 60

Goals and Guidelines for Spreadsheet Design 62

Make vs. Buy Decisions 64

Defining the Decision Variables 65 Defining the Objective Function 65 Defining the Constraints 66 Implementing the Model 66 Solving the Model 68 Analyzing the Solution 68

An Investment Problem 69

Defining the Decision Variables 70 Defining the Objective Function 71 Defining the Constraints 71 Implementing the Model 71 Solving the Model 73 Analyzing the Solution 74

A Transportation Problem 74

Defining the Decision Variables 75 Defining the Objective Function 76 Defining the Constraints 76 Implementing the Model 77 Heuristic Solution for the Model 79 Solving the Model 80 Analyzing the Solution 80

A Blending Problem 81

Defining the Decision Variables 82 Defining the Objective Function 82 Defining the Constraints 82 Some Observations About Constraints, Reporting, and Scaling 83 Rescaling the Model 84 Implementing the Model 85 Solving the Model 87 Analyzing the Solution 87

A Production and Inventory Planning Problem 88

Defining the Decision Variables 89 Defining the Objective Function 89 Defining the Constraints 90 Implementing the Model 91 Solving the Model 93 Analyzing the Solution 93

A Multiperiod Cash Flow Problem 94

Defining the Decision Variables 95 Defining the Objective Function 96 Defining the Constraints 96 Implementing the Model 98 Solving the Model 101 Analyzing the Solution 102 Modifying the Taco-Viva Problem to Account for Risk (Optional) 102 Implementing the Risk Constraints 104 Solving the Model 106 Analyzing the Solution 107

Data Envelopment Analysis 107

Defining the Decision Variables 108 Defining the Objective 108 Defining the Constraints 108 Implementing the Model 109 Solving the Model 111 Analyzing the Solution 116

Summary 118

References 118

The World of Management Science 118

Questions and Problems 119

Cases 137

4. Sensitivity Analysis and the Simplex Method 143

Introduction 143

The Purpose of Sensitivity Analysis 143

Approaches to Sensitivity Analysis 144

An Example Problem 145

The Answer Report 146

The Sensitivity Report 147

Changes in the Objective Function Coefficients 147 A Note About Constancy 149
Alternate Optimal Solutions 150 Changes in the RHS Values 150 Shadow Prices
for Nonbinding Constraints 151 A Note About Shadow Prices 151 Shadow Prices
and the Value of Additional Resources 152 Other Uses of Shadow Prices 154 The
Meaning of the Reduced Costs 154 Analyzing Changes in Constraint Coefficients 157
Simultaneous Changes in Objective Function Coefficients 158 A Warning About
Degeneracy 159

The Limits Report 159

The Sensitivity Assistant Add-In (Optional) 160

Creating Spider Tables and Plots 161 Creating a Solver Table 164 Comments 167

The Simplex Method (Optional) 167

Creating Equality Constraints Using Slack Variables 167 Basic Feasible Solutions 168 Finding the Best Solution 170

Summary 171

References 171

The World of Management Science 172

Questions and Problems 173

Cases 181

5. Network Modeling 185

Introduction 185

The Transshipment Problem 185

Characteristics of Network Flow Problems 186 The Decision Variables for Network Flow Problems 187 The Objective Function for Network Flow Problems 188 The Constraints for Network Flow Problems 188 Implementing the Model in a Spreadsheet 190 Analyzing the Solution 191

The Shortest Path Problem 192

An LP Model for the Example Problem 194 The Spreadsheet Model and Solution 195 Network Flow Models and Integer Solutions 197

The Equipment Replacement Problem 197

The Spreadsheet Model and Solution 199

Transportation/Assignment Problems 201

Generalized Network Flow Problems 203

Formulating an LP Model for the Recycling Problem 204 Implementing the Model 205 Analyzing the Solution 207 Generalized Network Flow Problems and Feasibility 209

Maximal Flow Problems 210

An Example of a Maximal Flow Problem 211 The Spreadsheet Model and Solution 212

Special Modeling Considerations 215

Minimal Spanning Tree Problems 218

An Algorithm for the Minimal Spanning Tree Problem 219 Solving the Example Problem 219

Summary 220

References 221

The World of Management Science 221

Questions and Problems 222

Cases 236

6. Integer Linear Programming 244

Introduction 244

Integrality Conditions 244

Relaxation 245

Solving the Relaxed Problem 246

Bounds 248

Rounding 249

Stopping Rules 251

Solving ILP Problems Using Solver 253

Other ILP Problems 255

An Employee Scheduling Problem 257

Defining the Decision Variables 258 Defining the Objective Function 258 Defining the Constraints 258 A Note About the Constraints 259 Implementing the Model 260 Solving the Model 260 Analyzing the Solution 261

Binary Variables 262

A Capital Budgeting Problem 262

Defining the Decision Variables 263 Defining the Objective Function 263 Defining the Constraints 264 Setting Up the Binary Variables 264 Implementing the Model 264 Solving the Model 265 Comparing the Optimal Solution to a Heuristic Solution 266

Binary Variables and Logical Conditions 268

The Fixed-Charge Problem 268

Defining the Decision Variables 269 Defining the Objective Function 270 Defining the Constraints 270 Determining Values for "Big M" 271 Implementing the Model 271 Solving the Model 273 Analyzing the Solution 274

Minimum Order/Purchase Size 276

Quantity Discounts 276

Formulating the Model 277 The Missing Constraints 277

A Contract Award Problem 278

Formulating the Model: The Objective Function and Transportation Constraints 279 Implementing the Transportation Constraints 279 Formulating the Model: The Side Constraints 280 Implementing the Side Constraints 281 Solving the Model 283 Analyzing the Solution 283

The Branch-and-Bound Algorithm (Optional) 284

Branching 285 Bounding 287 Branching Again 288 Bounding Again 288 Summary of B&B Example 289

Summary 290

References 292

The World of Management Science 292

Questions and Problems 293

Cases 306

7. Goal Programming and Multiple Objective Optimization 313

Introduction 313

Goal Programming 314

A Goal Programming Example 314

Defining the Decision Variables 315 Defining the Goals 315 Defining the Goal Constraints 315 Defining the Hard Constraints 316 GP Objective Functions 317 Defining the Objective 318 Implementing the Model 319 Solving the Model 321 Analyzing the Solution 321 Revising the Model 321 Trade-offs: The Nature of GP 322

Comments About Goal Programming 324

Multiple Objective Optimization 325

An MOLP Example 326

Defining the Decision Variables 326 Defining the Objectives 327 Defining the Constraints 327 Implementing the Model 327 Determining Target Values for the Objectives 328 Summarizing the Target Solutions 331 Determining a GP Objective 332 The MINIMAX Objective 333 Implementing the Revised Model 334 Solving the Model 335

Comments on MOLP 337

Summary 338

References 339

The World of Management Science 339

Questions and Problems 340

Cases 351

8. Nonlinear Programming and Evolutionary Optimization 354

Introduction 354

The Nature of NLP Problems 355

Solution Strategies for NLP Problems 356

Local vs. Global Optimal Solutions 357

Economic Order Quantity Models 360

Implementing the Model 362 Solving the Model 363 Analyzing the Solution 363 Comments on the EOQ Model 365

Location Problems 365

Defining the Decision Variables 367 Defining the Objective 367 Defining the Constraints 367 Implementing the Model 368 Solving the Model and Analyzing the Solution 368 Another Solution to the Problem 370 Some Comments About the Solution to Location Problems 371

Nonlinear Network Flow Problem 371

Defining the Decision Variables 372- Defining the Objective 373 Defining the Constraints 373 Implementing the Model 374 Solving the Model and Analyzing the Solution 374

Project Selection Problems 376

Defining the Decision Variables 378 Defining the Objective Function 378 Defining the Constraints 378 Implementing the Model 379 Solving the Model 381

Optimizing Existing Financial Spreadsheet Models 382

Implementing the Model 383 Optimizing the Spreadsheet Model 384 Analyzing the Solution 384 Comments on Optimizing Existing Spreadsheets 385

The Portfolio Selection Problem 386

Defining the Decision Variables 387 Defining the Objective 388 Defining the Constraints 388 Implementing the Model 389 Analyzing the Solution 391 Handling Conflicting Objectives in Portfolio Problems 392

Sensitivity Analysis 394

Lagrange Multipliers 397 Reduced Gradients 397

Solver Options for Solving NLPs 398

Evolutionary Algorithms 399

Beating the Market 401

A Spreadsheet Model for the Problem 401 Solving the Model 401 Analyzing the Solution 402

The Traveling Salesperson Problem 403

A Spreadsheet Model for the Problem 404 Solving the Model 406 Analyzing the Solution 407

Summary 408

References 408

The World of Management Science 409

Questions and Problems 409

Cases 424

9. Regression Analysis 429

Introduction 429

An Example 429

Regression Models 432

Simple Linear Regression Analysis 433

Defining "Best Fit" 434

Solving the Problem Using Solver 435

Solving the Problem Using the Regression Tool 437

Evaluating the Fit 439

The R² Statistic 442

Making Predictions 444

The Standard Error 444 Prediction Intervals for New Values of Y 444 Confidence Intervals for Mean Values of Y 447 A Note About Extrapolation 447

Statistical Tests for Population Parameters 448

Analysis of Variance 448 Assumptions for the Statistical Tests 449 A Note About Statistical Tests 451

Introduction to Multiple Regression 451

A Multiple Regression Example 453

Selecting the Model 453

Models with One Independent Variable 455 Models with Two Independent Variables 456 Inflating R² 458 The Adjusted-R² Statistic 458 The Best Model with Two Independent Variables 459 Multicollinearity 459 The Model with Three Independent Variables 460

Making Predictions 461

Binary Independent Variables 462

Statistical Tests for the Population Parameters 463

Polynomial Regression 463

Expressing Nonlinear Relationships Using Linear Models 465 Summary of Nonlinear Regression 468

Summary 469

References 470

The World of Management Science 470

Questions and Problems 471

Cases 482

10. Discriminant Analysis 485

Introduction 485

The Two-Group DA Problem 486

Group Locations and Centroids 487 Calculating Discriminant Scores 489 The Classification Rule 491 Refining the Cutoff Value 493 Classification Accuracy 494 Classifying New Employees 495

The k-Group DA Problem 497

Multiple Discriminant Analysis 498 Distance Measures 500 MDA Classification 502

Summary 504

References 505

The World of Management Science 505

Questions and Problems 506

Cases 511

11. Time Series Forecasting 515

Introduction 515

Time Series Methods 516

Measuring Accuracy 517

Stationary Models 517

Moving Averages 518

Forecasting with the Moving Average Model 521

Weighted Moving Averages 522

Forecasting with the Weighted Moving Average Model 524

Exponential Smoothing 525

Forecasting with the Exponential Smoothing Model 528

Seasonality 529

Stationary Data with Additive Seasonal Effects 529

Forecasting with the Model 534

Stationary Data with Multiplicative Seasonal Effects 534

Forecasting with the Model 537

Trend Models 538

An Example 538

Double Moving Average 539

Forecasting with the Model 541

Double Exponential Smoothing (Holt's Method) 542

Forecasting with Holt's Method 544

Holt-Winter's Method for Additive Seasonal Effects 545

Forecasting with Holt-Winter's Additive Method 549

Holt-Winter's Method for Multiplicative Seasonal Effects 550

Forecasting with Holt-Winter's Multiplicative Method 554

Modeling Time Series Trends Using Regression 554

Linear Trend Model 554

Forecasting with the Linear Trend Model 555

Quadratic Trend Model 558

Forecasting with the Quadratic Trend Model 559

Modeling Seasonality with Regression Models 560

Adjusting Trend Predictions with Seasonal Indices 561

Computing Seasonal Indices 562 Forecasting with Seasonal Indices 563 Refining the Seasonal Indices 564

Seasonal Regression Models 566

The Seasonal Model 567 Forecasting with the Seasonal Regression Model 570

Crystal Ball Predictor 571

Using CB Predictor 571

Combining Forecasts 576

Summary 577

References 577

The World of Management Science 578

Questions and Problems 579

Cases 589

12. Introduction to Simulation Using Crystal Ball 595

Introduction 595

Random Variables and Risk 596

Why Analyze Risk? 596

Methods of Risk Analysis 597

Best-Case/Worst-Case Analysis 597 What-If Analysis 598 Simulation 599

A Corporate Health Insurance Example 599

A Critique of the Base Case Model 601

Spreadsheet Simulation Using Crystal Ball 602

Starting Crystal Ball 602

Random Number Generators 603

Discrete vs. Continuous Random Variables 606

Preparing the Model for Simulation 607

Alternate RNG Entry 609

Running the Simulation 610

Selecting the Output Cells to Track 610 Selecting the Number of Iterations 611 Determining the Sample Size 612 Running the Simulation 612

Data Analysis 613

The Best Case and the Worst Case 613 Viewing the Distribution of the Output Cells 614 Viewing the Cumulative Distribution of the Output Cells 615 Obtaining Other Cumulative Probabilities 616

Incorporating Graphs and Statistics into a Spreadsheet 617

The Uncertainty of Sampling 618

Constructing a Confidence Interval for the True Population Mean 618 Constructing a Confidence Interval for a Population Proportion 620 Sample Sizes and Confidence Interval Widths 621

The Benefits of Simulation 621

Additional Uses of Simulation 621

A Reservation Management Example 622

Implementing the Model 623 Using the Decision Table Tool 625

An Inventory Control Example 629

Creating the RNGs 630 Implementing the Model 631 Replicating the Model 634 Optimizing the Model 634 Comment on Using OptQuest 637

A Project Selection Example 638

A Spreadsheet Model 639 Solving the Problem with OptQuest 640 Considering Other Solutions 642

Summary 646

References 646

The World of Management Science 647

Questions and Problems 647

Cases 660

13. Queuing Theory 668

Introduction 668

The Purpose of Queuing Models 669

Queuing System Configurations 670

Characteristics of Queuing Systems 671

Arrival Rate 671 Service Rate 673

Kendall Notation 675

Queuing Models 675

The M/M/s Model 677

An Example 677 The Current Situation 677 Adding a Server 678 Economic Analysis 680

The M/M/s Model with Finite Queue Length 680

The Current Situation 681 Adding a Server 682

The M/M/s Model with Finite Population 682

An Example 684 The Current Situation 684 Adding Servers 686

The M/G/1 Model 686

The Current Situation 689 Adding the Automated Dispensing Device 689

The M/D/1 Model 690

Simulating Queues and the Steady-State Assumption 692

Summary 693

References 693

The World of Management Science 694

Questions and Problems 695

Cases 701

14. Project Management 703

Introduction 703

An Example 704

Creating the Project Network 704

A Note on Start and Finish Points 706

CPM: An Overview 707

The Forward Pass 708

The Backward Pass 711

Determining the Critical Path 713

A Note on Slack 714

Project Management Using Spreadsheets 715

Project Crashing 721

An LP Approach to Crashing 722 Determining the Earliest Crash Completion Time 723 Implementing the Model 725 Solving the Model 726 Determining a Least Costly Crash Schedule 727 Crashing as an MOLP 727

Certainty vs. Uncertainty 729

PERT: An Overview 730

The Problems with PERT 731 Implications 733

Simulating Project Networks 733

An Example 733 Generating Random Activity Times 733 Implementing the Model 735 Running the Simulation 735 Analyzing the Results 737

Microsoft Project 738

Summary 741

References 742

The World of Management Science 742

Questions and Problems 743

Cases 751

15. Decision Analysis 754

Introduction 754

Good Decisions vs. Good Outcomes 755

Characteristics of Decision Problems 755

An Example 756

The Payoff Matrix 757

Decision Alternatives 757 States of Nature 757 The Payoff Values 758

Decision Rules 759

Nonprobabilistic Methods 760

The Maximax Decision Rule 760 The Maximin Decision Rule 761 The Minimax Regret Decision Rule 761

Probabilistic Methods 764

Expected Monetary Value 765 Expected Regret 766 Sensitivity Analysis 768

The Expected Value of Perfect Information 770

Decision Trees 771

Rolling Back a Decision Tree 773

Using TreePlan 775

Adding Branches 775 Adding Event Nodes 776 Adding the Cash Flows 780 Determining the Payoffs and EMVs 782 Other Features 782

Multistage Decision Problems 784

A Multistage Decision Tree 785

Analyzing Risk in a Decision Tree 786

Risk Profiles 788 Strategy Tables 789

Using Sample Information in Decision Making 791

Conditional Probabilities 793 The Expected Value of Sample Information 793

Computing Conditional Probabilities 794

Bayes's Theorem 796

Utility Theory 797

Utility Functions 798 Constructing Utility Functions 799 Using Utilities to Make Decisions 801 The Exponential Utility Function 802 Incorporating Utilities in TreePlan 803

Multicriteria Decision Making 805

The Multicriteria Scoring Model 806

The Analytic Hierarchy Process 809

Pairwise Comparisons 809 Normalizing the Comparisons 810 Consistency 811 Obtaining Scores for the Remaining Criteria 814 Obtaining Criterion Weights 814 Implementing the Scoring Model 817

Summary 817

References 817

The World of Management Science 818

Questions and Problems 819

Cases 830

Index 833