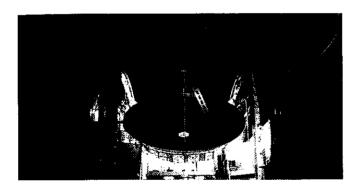

SERWAY/FAUGHN

Contents

Volume 1


Part 1: Mechanics

Chapter 1

Introduction 1

- 1.1 Standards of Length, Mass, and Time 1
- 1.2 The Building Blocks of Matter 4
- 1.3 Dimensional Analysis 5
- 1.4 Uncertainty in Measurement and Significant Figures 7
- 1,5 Conversion of Units 9
- 1.6 Estimates and Order-of-Magnitude Calculations 11
- 1.7 Coordinate Systems 13
- 1.8 Trigonometry 14
- 1.9 Problem-Solving Strategy 16

Summary 17

Chapter 2

Motion in One Dimension 23

- 2.1 Displacement 24
- 2.2 Velocity 25
- 2.3 Acceleration 30
- 2.4 Motion Diagrams 33
- 2.5 One-Dimensional Motion with Constant Acceleration 35
- 2.6 Freely Falling Objects 41

Summary 45

Chapter 3

Vectors and Two-Dimensional Motion 53

- 3.1 Vectors and Their Properties 53
- 3.2 Components of a Vector **56**
- 3.3 Displacement, Velocity, and Acceleration in Two Dimensions 59
- 3.4 Motion in Two Dimensions 60
- 3.5 Relative Velocity 68

Summary 72

Chapter 4

The Laws of Motion 81

- 4.1 Forces **81**
- 4.2 Newton's First Law 83
- 4.3 Newton's Second Law 84
- 4.4 Newton's Third Law 90
- 4.5 Applications of Newton's Laws 92
- 4.6 Forces of Friction 100

Summary 107

Chapter 5

Energy 118

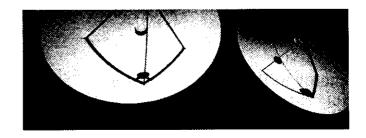
- 5.1 Work **118**
- 5.2 Kinetic Energy and the Work Energy Theorem 123
- 5.3 Gravitational Potential Energy 126
- 5.4 Spring Potential Energy 134
- 5.5 Systems and Energy Conservation 140
- 5.6 Power **142**
- 5.7 Work Done by a Varying Force 146

Summary 148

Chapter 6

Momentum and Collisions 160

- 6.1 Momentum and Impulse 160
- 6.2 Conservation of Momentum 166
- 6.3 Collisions 168
- 6.4 Glancing Collisions 175
- 6.5 Rocket Propulsion 177


Summary 180

Chapter 7

Rotational Motion and the Law of Gravity 189

- 7.1 Angular Speed and Angular Acceleration 189
- 7.2 Rotational Motion Under Constant Angular Acceleration 193
- 7.3 Relations Between Angular and Linear Quantities 194
- 7.4 Centripetal Acceleration 198
- 7.5 Newtonian Gravitation 206
- 7.6 Kepler's Laws 214

Summary 217

Chapter 8

Rotational Equilibrium and Rotational Dynamics 226

- 8.1 Torque 227
- 8.2 Torque and the Two Conditions for Equilibrium 230
- 8.3 The Center of Gravity 232
- 8.4 Examples of Objects in Equilibrium 234
- 8.5 Relationship Between Torque and Angular Acceleration 237
- 8.6 Rotational Kinetic Energy 244
- 8.7 Angular Momentum 247

Summary 251

Chapter 9

Solids and Fluids 266

- 9.1 States of Matter 266
- 9.2 The Deformation of Solids 268
- 9.3 Density and Pressure 274
- 9.4 Variation of Pressure with Depth 277
- 9.5 Pressure Measurements 281
- 9.6 Buoyant Forces and Archimedes's Principle 282
- 9.7 Fluids in Motion 288
- 9.8 Other Applications of Fluid Dynamics 294
- 9.9 Surface Tension, Capillary Action, and Viscous Fluid Flow 298
- 9.10 Transport Phenomena 305

Summary 309

Part 2: Thermodynamics

Chapter 10

Thermal Physics 321

- 10.1 Temperature and the Zeroth Law of Thermodynamics 322
- 10.2 Thermometers and Temperature Scales 323
- 10.3 Thermal Expansion of Solids and Liquids 327
- 10.4 Macroscopic Description of an Ideal Gas 334
- 10.5 The Kinetic Theory of Gases 339

Summary 344

Chapter 11

Energy in Thermal Processes 352

- 11.1 Heat and Internal Energy 352
- 11.2 Specific Heat 355
- 11.3 Calorimetry 357
- 11.4 Latent Heat and Phase Change 359

- 11.5 Energy Transfer 365
- 11.6 Global Warming and Greenhouse Gases 375

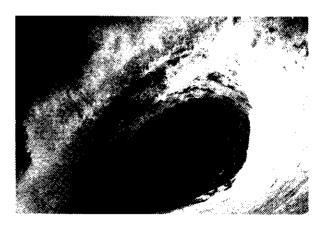
Summary 377

Chapter 12

The Laws of Thermodynamics 386

- 12.1 Work in Thermodynamic Processes 386
- 12.2 The First Law of Thermodynamics 389
- 12.3 Heat Engines and the Second Law of Thermodynamics 399
- 12.4 Entropy 408
- 12.5 Human Metabolism 413

Summary 416


Part 3: Vibrations and Waves

Chapter 13

Vibrations and Waves 424

- 13.1 Hooke's Law 424
- 13.2 Elastic Potential Energy 427
- 13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion 432
- 13.4 Position, Velocity, and Acceleration as a Function of Time 435
- 13.5 Motion of a Pendulum 438
- 13.6 Damped Oscillations 441
- 13.7 Waves 441
- 13.8 Frequency, Amplitude, and Wavelength 444
- 13.9 The Speed of Waves on Strings 446
- 13.10 Interference of Waves 447
- 13.11 Reflection of Waves 448

Summary 449

Chapter 14

Sound 458

- 14.1 Producing a Sound Wave 458
- 14.2 Characteristics of Sound Waves 459
- 14.3 The Speed of Sound 461
- 14.4 Energy and Intensity of Sound Waves 463
- 14.5 Spherical and Plane Waves 465

- 14.6 The Doppler Effect 467
- 14.7 Interference of Sound Waves 473
- 14.8 Standing Waves 475
- 14.9 Forced Vibrations and Resonance 479
- 14.10 Standing Waves in Air Columns 480
- 14.11 Beats 484
- 14.12 Quality of Sound 486
- 14.13 The Ear 487

Summary 489

Appendix A

Mathematical Review A.1

Appendix B

An Abbreviated Table of Isotopes A.9

Appendix C
Some Useful Tables A.14

Appendix D SI Units A.16

Answers to Quick Quizzes and Odd-numbered Conceptual Questions and Problems A.17 Index 1.1