

Table of Contents

1 Biochemistry and the Organization of Cells 1

- 1.1 What Are the Basic Themes for This Text? 1
- 1.2 What Is the Chemical Nature of Important Biomolecules? 2
- 1.3 What Can Biochemistry Say about Possible Origins of Life? 5

The Earth and Its Age 5

Biomolecules 7

Biochemical Connections: Structure and Function of Biomolecules 8

Molecules to Cells 10

- 1.4 How Do Prokaryotes and Eukaryotes Differ in Levels of Organization? 14
- 1.5 What Are the Main Structural Features of Prokaryotic Cells? 15
- 1.6 What Are the Main Structural Features of Eukaryotic Cells? 16

Important Organelles 16

Other Organelles and Cellular Constituents 19

1.7 How Do We Classify Organisms: Five Kingdoms or Three Domains? 21

Biochemical Connections: Extremophiles: The Toast of the Biotechnology Industry 23

- 1.8 Is There Common Ground for All Cells? 24
- 1.9 How Do Cells Use Energy? 26
- 1.10 What Is the Connection between Energy and Change? 27
- 1.11 What Is the Criterion for Spontaneity in Biochemical Reactions? 28
- 1.12 What Is the Connection between Thermodynamics and Life? 28

Biochemical Connections: Entropy and Probability 29

Summary 30

Critical Questions to Review 30

Annotated Bibliography 33

Water: The Solvent for Biochemical Reactions 34

2.1 What Makes Water a Polar Molecule? 34 Solvent Properties of Water 35

2.2 What Is a Hydrogen Bond? 38

Biologically Important Hydrogen Bonds Other Than to Water Molecules 41

Biochemical Connections: The Importance of the Hydrogen Bond 42

- 2.3 What Are Acids and Bases? 42
- 2.4 What Is pH, and What Does It Have to Do with the Properties of Water? 43

 Monitoring Acidity 44
- 2.5 What Are Titration Curves? 46
- 2.6 What Are Buffers, and Why Are They Important? 48

How We Make Buffers 52

Biochemical Connections: Buffer Selection 52

Buffer Systems of Physiological Importance 53

Biochemical Connections: Some Physiological Consequences of Blood Buffering 54

Summary 55

Critical Questions to Review 55

Annotated Bibliography 57

3 Amino Acids and Peptides 58

- 3.1 What Are Amino Acids, and What Is Their Three-Dimensional Structure? 58
- 3.2 What Are the Structures and Properties of the Individual Amino Acids? 59

Group 1—Amino Acids with Nonpolar Side Chains 59

Group 2—Amino Acids with Electrically Neutral Polar Side Chains 62

Group 3—Amino Acids with Carboxyl Groups in Their Side Chains 63

Group 4—Amino Acids with Basic Side Chains 63

Biochemical Connections: Amino Acids and Neurotransmitters 64

Uncommon Amino Acids 65

- 3.3 Do Amino Acids Have Specific Acid-Base Properties? 65
- 3.4 What Is the Peptide Bond? 68

 Biochemical Connections: Amino Acid Functions
 Other Than in Peptides 70
- 3.5 Are Small Peptides Physiologically Active? 72

 Biochemical Connections: Aspartame, the Sweet
 Peptide 73

Biochemical Connections: Phenylketonuria and Inborn Errors of Metabolism 75

Biochemical Connections: Peptide Hormones 76

Summary 77

Critical Questions to Review 77

Annotated Bibliography 78

4 The Three-Dimensional Structure of Proteins 80

4.1 How Does the Structure of Proteins Determine Their Function? 80

Levels of Structure in Proteins 80

- 4.2 What Is the Primary Structure of Proteins? 81
- 4.3 What Is the Secondary Structure of Proteins? 81

 Biochemical Connections: Complete Proteins and
 Nutrition 82

Periodic Structures in Protein Backbones 83

The α-Helix 83

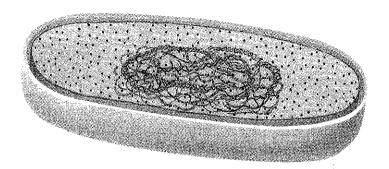
The β-Sheet 85

Irregularities in Regular Structures 85

Supersecondary Structures and Domains 86

The Collagen Triple Helix 90

Two Types of Protein Conformations: Fibrous and Globular 91


4.4 What Can We Say about the Thermodynamics of Protein Folding? 92

Hydrophobic Interactions: A Case Study in Thermodynamics 93

4.5 What Is the Tertiary Structure of Proteins? 95

Myoglobin: An Example of Protein Structure 97 Denaturation and Refolding 99

4.6 Can We Predict Protein Folding from Sequence? 101

Protein-Folding Chaperones 102

Biochemical Connections: Prions 103

4.7 What Is the Quaternary Structure of Proteins? 104

Hemoglobin 104

Conformational Changes That Accompany Hemoglobin Function 105

Summary 110

Critical Questions to Review 110

Annotated Bibliography 112

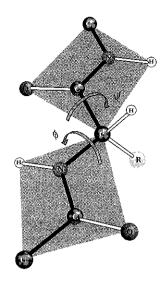
5 Protein Purification and Characterization Techniques 113

5.1 How Do We Extract Pure Proteins from Cells? 113

Isolation of Proteins from Cells 113

- 5.2 What Is Column Chromatography? 116
- 5.3 What Is Electrophoresis? 121
- 5.4 How Do We Determine the Primary Structure of a Protein? 122

Cleavage of the Protein into Peptides 124 Sequencing of Peptides: The Edman Method 126


Summary 128

Critical Questions to Review 128

Annotated Bibliography 130

6 The Behavior of Proteins: Enzymes 131

- 6.1 What Makes Enzymes Such Effective Biological Catalysts? 131
- 6.2 What Is the Difference between the Kinetic and the Thermodynamic Aspects of Reactions? 131

Biochemical Connections: Enzymes as Markers for Disease 133

- 6.3 How Can We Describe Enzyme Kinetics in Mathematical Terms? 134
- 6.4 How Do Substrates Bind to Enzymes? 135
- 6.5 What Are Some Examples of Enzyme-Catalyzed Reactions? 137
- 6.6 What Is the Michaelis-Menten Approach to Enzyme Kinetics? 139

Linearizing the Michaelis-Menten Equation 142 Significance of $K_{\rm M}$ and $V_{\rm max}$ 144

6.7 How Do Enzymatic Reactions Respond to Inhibitors? 146

Kinetics of Competitive Inhibition 146

Biochemical Connections: Practical Information from Kinetic Data 147

Kinetics of Noncompetitive Inhibition 149

Biochemical Connections: Enzyme Inhibition in the Treatment of AIDS 151

Summary 152

Critical Questions to Review 152

Annotated Bibliography 154

7 The Behavior of Proteins: Enzymes, Mechanisms, and Control 156

7.1 Does the Michaelis-Menten Model Describe the Behavior of Allosteric Enzymes? 156

Control Mechanisms That Affect Allosteric Enzymes 157

7.2 What Are the Models for the Behavior of Allosteric Enzymes? 160

The Concerted Model for Allosteric Behavior 160
The Sequential Model for Allosteric Behavior 163

- 7.3 How Does Phosphorylation of Specific Residues Regulate Enzyme Activity? 164
- 7.4 What Are Zymogens, and How Do They Control Enzyme Activity? 166

Some of the Processes Involved in Blood Clotting 167

7.5 How Do Active-Site Events of an Enzyme Affect the Reaction Mechanism? 167

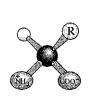
Determining the Essential Amino Acid Residues 168
The Architecture of the Active Site 169
The Mechanism of Chymotrypsin Action 170

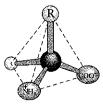
7.6 What Types of Chemical Reactions Are Involved in Enzyme Mechanisms? 172

Biochemical Connections: Enzymes Catalyze Familiar Reactions of Organic Chemistry 173 Biochemical Connections: Families of Enzymes: Proteases 176

- 7.7 What Is the Connection between the Active Site and Transition States? 176
- 7.8 What Are Coenzymes? 178

 Biochemical Connections: Catalytic Antibodies
 against Cocaine 179


Summary 181


Critical Questions to Review 181

Annotated Bibliography 183

- **B** Lipids and Proteins Are Associated in Biological Membranes 184
- 8.1 What Is the Definition of a Lipid? 184
- 8.2 What Are the Chemical Natures of the Lipid Types? 184

Fatty Acids 184
Triacylglycerols 186
Phosphoacylglycerols (Phospholipids) 187
Waxes 189

Sphingolipids 189 Glycolipids 189 Steroids 189

Biochemical Connections: Myelin and Multiple Sclerosis 190

8.3 What Is the Nature of Biological Membranes? 191

Lipid Bilayers 192

Biochemical Connections: Butter Versus Margarine—Which Is Healthier? 195

- 8.4 What Are Some Common Types of Membrane Proteins? 196
- 8.5 What Is the Fluid-Mosaic Model of Membrane Structure? 197

Biochemical Connections: Membranes in **Medicine** 198

8.6 What Are Some of the Functions of Membranes? 199

Membrane Transport 199
Membrane Receptors 202

8.7 Which Are the Lipid-Soluble Vitamins, and What Are Their Functions? 203

Vitamin A 203

Vitamin D 205

Vitamin E 206

Biochemical Connections: The Chemistry of Vision 207

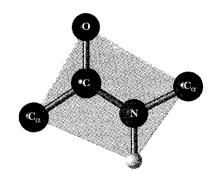
Vitamin K 208

8.8 What Are Prostaglandins and Leukotrienes, and What Do They Have to Do with Lipids? 209

Biochemical Connections: Omega-3 Fatty Acids and Platelets in Heart Disease 212

Summary 212

Critical Questions to Review 213


Annotated Bibliography 214

9 Nucleic Acids: How Structure Conveys Information 215

- 9.1 What Are the Levels of Structure in Nucleic Acids? 215
- 9.2 What Is the Covalent Structure of Polynucleotides? 216

Biochemical Connections: The DNA Family Tree 220

9.3 What Is the Structure of DNA? 220Secondary Structure of DNA: The Double Helix 220

Conformational Variations in DNA 222

Tertiary Structure of DNA: Supercoiling 225

Biochemical Connections: Triple-Helical DNA: A Tool for Drug Design 226

Supercoiling in Prokaryotic DNA 226 Supercoiling in Eukaryotic DNA 228

9.4 How Does the Denaturation of DNA Take Place? 228

Biochemical Connections: The Human Genome Project: Prospects and Possibilities 230

9.5 What Are the Principal Kinds of RNA and Their Structures? 231

Transfer RNA 233

Ribosomal RNA 234

Messenger RNA 236

Small Nuclear RNA 236

RNA Interference 237

Summary 237

Critical Questions to Review 237

Annotated Bibliography 239

10 Biosynthesis of Nucleic Acids: Replication 240

- 10.1 What Is the Flow of Genetic Information in the Cell? 240
- 10.2 What Are the General Considerations in the Replication of DNA? 241

Semiconservative Replication 242 Bidirectional Replication 243

10.3 How Does the DNA Polymerase Reaction Take Place? 244

One Strand of DNA Is Synthesized Semidiscontinuously 244 DNA Polymerase from *E. coli* 244

10.4 Which Proteins Are Required for DNA Replication? 248

Unwinding the Double Helix 248 The Primase Reaction 248

Synthesis and Linking of New DNA Strands 249

10.5 How Do Proofreading and Repair Take Place? 250

Biochemical Connections: Why Does DNA Contain Thymine and Not Uracil? 251

Biochemical Connections: The SOS Response in E. coli 255

10.6 How Is DNA Replicated in Eukaryotes? 255

Cell-Cycle Control of Replication 256 Eukaryotic DNA Polymerases 256

Biochemical Connections: Telomerase and Cancer 258

The Eukaryotic Replication Fork 260

Summary 261

Critical Questions to Review 262

Annotated Bibliography 263

11 Transcription of the Genetic Code: The Biosynthesis of RNA 264

11.1 How Does Transcription Take Place in Prokaryotes? 264

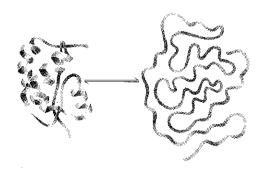
RNA Polymerase in Escherichia coli 264

Promoter Structure 266

Chain Initiation 267

Chain Elongation 267

Chain Termination 268


11.2 How Is Transcription Regulated in Prokaryotes? 270

Alternative or Factors 270

Enhancers 271

Operons 272

Transcription Attenuation 275

11.3 How Does Transcription Take Place in Eukaryotes? 278

Structure of RNA Polymerase II 278

Pol II Promoters 279

Initiation of Transcription 280

Elongation and Termination 283

11.4 How Is Transcription Regulated in Eukaryotes? 283

Biochemical Connections: TFIIH—Making the Most Out of the Genome 284

Enhancers and Silencers 285

Response Elements 285

Biochemical Connections: CREB—The Most Important Protein You Have Never Heard Of? 288

11.5 What Are Some Structural Motifs in DNA-Binding Proteins? 288

DNA-Binding Domains 288

Helix-Turn-Helix Motifs 288

Zinc Fingers 290

Basic-Region Leucine Zipper Motif 290

Transcription-Activation Domains 291

11.6 How Is RNA Modified after Transcription? 291

Transfer RNA and Ribosomal RNA 291

Messenger RNA 293

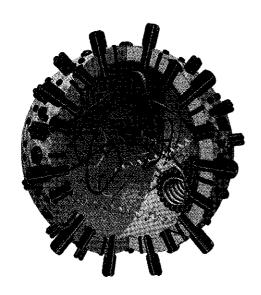
The Splicing Reaction: Lariats and Snurps 294

Biochemical Connections: Lupus: An Autoimmune Disease Involving RNA Processing 296

Alternative RNA Splicing 296

11.7 How Does RNA Act as an Enzyme? 297

Summary 298


Critical Questions to Review 298

Annotated Bibliography 299

12 Protein Synthesis: Translation of the Genetic Message 301

- 12.1 What Is the Overall Process of Translating the Genetic Message? 301
- 12.2 What Is the Genetic Code? 302 Codon-Anticodon Pairing and Wobble 304
- 12.3 What Is the Role of Aminoacyl-tRNA
 Synthetases in Amino Acid Activation? 307
- 12.4 How Does Translation Take Place in **Prokaryotes?** 309

Ribosomal Architecture 309

Chain Initiation 309
Chain Elongation 311
Chain Termination 315

Biochemical Connections: The 21st Amino Acid? 317

The Ribosome Is a Ribozyme 318 Polysomes 318

12.5 How Does Translation Take Place in Eukaryotes? 320

Chain Initiation 320

Chain Elongation 321

Chain Termination 322

Coupled Transcription and Translation in Eukaryotes? 323

12.6 How Does Posttranslational Modification of Proteins Take Place? 323

Biochemical Connections: Molecular Chaperones: Preventing Unsuitable Associations 324

12.7 How Are Proteins Degraded? 325

Biochemical Connections: How Do We Adapt to High Altitude? 326

Summary 327

Critical Questions to Review 328

Annotated Bibliography 329

13 Nucleic Acid Biotechnology Techniques 330

13.1 How Do We Purify and Detect Nucleic Acids? 330

Separation Techniques 330 Detection Methods 331

13.2 What Makes Restriction Endonucleases an Important Tool for DNA Research? 332

Many Restriction Endonucleases Produce "Sticky Ends" 333

13.3 What Is Cloning? 334

Using "Sticky Ends" to Construct Recombinant DNA 334

Biochemical Connections: Restriction

Endonucleases: "Molecular Scissors" 335

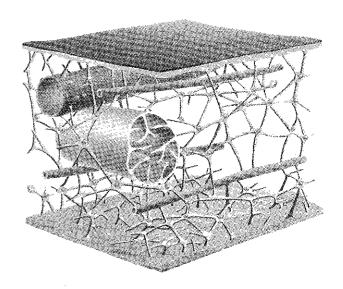
13.4 What Is Genetic Engineering, and Why Do We Do It? 342

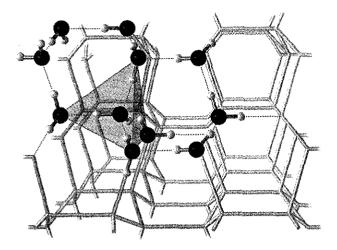
DNA Recombination Occurs in Nature 342

Biochemical Connections: Genetic Engineering in Agriculture 343

Bacteria as "Protein Factories" 344 Protein Expression Vectors 345

Biochemical Connections: Human Proteins through Genetic Recombination Techniques 347


Genetic Engineering in Eukaryotes 347


Biochemical Connections: Fusion Proteins and Fast Purifications 348

- 13.5 What Are DNA Libraries? 349
 Finding an Individual Clone in a DNA Library 351
- 13.6 What Is the Polymerase Chain Reaction? 352

 Biochemical Connections: Forensic Uses of DNA
 Testing 354
- 13.7 What Is Site-Directed Mutagenesis? 355
- 13.8 What Is DNA Fingerprinting? 357

Restriction-Fragment Length Polymorphisms: A Powerful Method for Forensic Analysis 358

- 13.9 How Can We Study DNA-Protein Interactions? 359
- 13.10 What Are Some Methods for Studying Transcription? 361

Biochemical Connections: DNA Chips—Robotic Technology Meets Biochemistry 363

Biochemical Connections: RNA Interference—The Newest Way to Study Genes 364

- 13.11 How Do We Determine the Base Sequences of Nucleic Acids? 365
- 13.12 How Can We Use Bioinformatics to Study Genomics and Proteomics? 366

Summary 369

Critical Questions to Review 369

Annotated Bibliography 371

14 Hot Topics in Cell and Molecular Biology 372

14.1 What Are Viruses? 372

Virus Structure 373

Families of Viruses 373

Virus Life Cycles 374

Viral Attachment 378

Biochemical Connections: Influenza—The Virus That Won't Go Away 378

- 14.2 What Virus Causes Severe Acute Respiratory Syndrome (SARS)? 379
- 14.3 What Is Unique about Retroviruses? 380
- 14.4 How Are Viruses Used in Gene Therapy? 381
- 14.5 How Does the Immune System Defend the Body? 384

Innate Immunity—The Front Lines of Defense 385

Acquired Immunity: Cellular Aspects 387

T-Cell Functions 387 T-Cell Memory 390

The Immune System: Molecular Aspects 391

Biochemical Connections: A Carbohydrate-Based Anticancer Vaccine 393

Distinguishing Self from Nonself 394

14.6 How Does Human Immunodeficiency Virus Cause AIDS? 396

HIV Confounds Our Immune Systems 398

The Search for a Vaccine 398

Antiviral Therapy 400

Antibodies Get a Second Chance 400

The Future of Antibody Research 401

14.7 Why Are Stem Cells Special? 401

History of Stem-Cell Research 401 Stem Cells Offer Hope 402

14.8 What Is the Biochemistry of Cancer? 403

The Mark of a Cancer Cell 403

What Causes Cancer? 404

Oncogenes 404

Tumor Suppressors 406

Viruses and Cancer 407

Biochemical Connections: If It Isn't One Thing, It's Another 407

Biochemical Connections: Viruses Helping Cure Cancer 408

Summary 410

Critical Questions to Review 411

Annotated Bibliography 412

15 The Importance of Energy Changes and Electron Transfer in Metabolism 414

- 15.1 What Are Standard States for Free-Energy Changes? 414
- 15.2 What Is a Modified Standard State for Biochemical Applications? 415

Biochemical Connections: Biochemical Thermodynamics 416

15.3 What Is Metabolism? 417

Biochemical Connections: Living Things Are Unique Thermodynamic Systems 418

- 15.4 How Are Oxidation and Reduction Involved in Metabolism? 418
- 15.5 How Are Coenzymes Used in Biologically Important Oxidation-Reduction Reactions? 420
- 15.6 How Are Production and Use of Energy Coupled? 422
- 15.7 How Is Coenzyme A Involved in Activation of Metabolic Pathways? 427

Summary 430

Critical Questions to Review 431

Annotated Bibliography 433

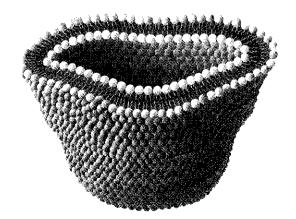
16 | Carbohydrates 434

- 16.1 What Are the Structures and the Stereochemistry of Monosaccharides? 434Cyclic Structures: Anomers 437
- 16.2 How Do Monosaccharides React? 440

Oxidation–Reduction Reactions 440

Esterification Reactions 442

Biochemical Connections: Vitamin C Is Related to Sugars 443


The Formation of Glycosides 443

Other Derivatives of Sugars 446

Biochemical Connections: Glycosides, Fruits, and Flowers 447

- 16.3 What Are Some Important Oligosaccharides? 448
- 16.4 What Are the Structures and Functions of Polysaccharides? 449

Biochemical Connections: Lactose Intolerance 450 Cellulose and Starch 451

The Forms of Starch 451 Glycogen 453 Chitin 454

Biochemical Connections: Dietary Fiber 454

The Role of Polysaccharides in the Structure of Cell Walls 455

Glycosaminoglycans 458

16.5 What Are Glycoproteins? 458

Biochemical Connections: Low-Carbohydrate Diets 459

Biochemical Connections: Glycoproteins and Blood Transfusions 459

Summary 460

Critical Questions to Review 460

Annotated Bibliography 462

17 | Glycolysis 463

- 17.1 What Is the Overall Pathway in Glycolysis? 463
 A Summary of the Reactions of Glycolysis 464
 Biochemical Connections: Louis Pasteur 466
- 17.2 How is the 6-Carbon Glucose Converted to the 3-Carbon Glyceraldehyde-3-Phosphate? 467
- 17.3 How Is Glyceraldehyde-3-Phosphate Converted to Pyruvate? 472

Control Points in the Glycolytic Pathway 478

17.4 How Is Pyruvate Metabolized Anaerobically? 479

The Conversion of Pyruvate to Lactate in Muscle 479 Alcoholic Fermentation 481

Biochemical Connections: Anaerobic Metabolism and Tooth Decay 481

Biochemical Connections: Fetal Alcohol Syndrome 483

17.5 How Much Energy Can Be Produced by Glycolysis? 483

Summary 484

Critical Questions to Review 485

Annotated Bibliography 486

18 Storage Mechanisms and Control in Carbohydrate Metabolism 487

18.1 How is Glycogen Produced and Degraded? 487
 Breakdown of Glycogen 487
 Formation of Glycogen from Glucose 489
 Control of Glycogen Metabolism: A Case Study in Control Mechanisms 491

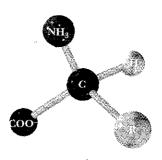
Biochemical Connections: Glycogen Loading 493

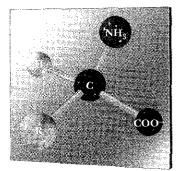
18.2 How Does Gluconeogenesis Produce Glucose from Pyruvate? 495

Oxaloacetate Is an Intermediate in the Production of Phosphoenolpyruvate in Gluconeogenesis 495 The Role of Sugar Phosphates in Gluconeogenesis 498

18.3 How Is Carbohydrate Metabolism Controlled? 499

Control of Phosphofructokinase and Fructose-1,6bisphosphatase 499 Control of Pyruvate Kinase 503 Control of Hexokinase 503


18.4 Why Is Glucose Sometimes Diverted through the Pentose Phosphate Pathway? 504


Oxidative Reactions of the Pentose Phosphate Pathway 504 Nonoxidative Reactions of the Pentose Phosphate Pathway 504

Control of the Pentose Phosphate Pathway 506

Biochemical Connections: The Pentose Phosphate Pathway and Hemolytic Anemia 508

Summary 509
Critical Questions to Review 509
Annotated Bibliography 510

19 The Citric Acid Cycle 511

- 19.1 What Role Does the Citric Acid Cycle Play in Metabolism? 511
- 19.2 What Is the Overall Pathway of the Citric Acid Cycle? 512
- 19.3 How is Pyruvate Converted to Acetyl-CoA? 515
- 19.4 What Are the Individual Reactions of the Citric Acid Cycle? 518

Biochemical Connections: Plant Poisons and the Citric Acid Cycle 520

19.5 What Are the Energetics of the Citric Acid Cycle, and How Is It Controlled? 525

Control of Pyruvate Dehydrogenase 526
Control of the Citric Acid Cycle Proper 527

- 19.6 What is the Glyoxylate Cycle? 528
- 19.7 What Role Does the Citric Acid Cycle Play in Catabolism? 529
- 19.8 What Role Does the Citric Acid Cycle Play in Anabolism? 531

Biochemical Connections: Anaplerotic Reactions 532 Lipid Anabolism 532

Anabolism of Amino Acids and Other Metabolites 534

Biochemical Connections: Acetyl-CoA 534

19.9 Why Isn't Oxygen Part of the Equation? 536

Biochemical Connections: Why Is It So Hard to Lose
Weight? 536

Summary 537

Critical Questions to Review 537

Annotated Bibliography 539

20 Electron Transport and Oxidative **Phosphorylation** 540

- 20.1 What Role Does Electron Transport Play in Metabolism? 540
- 20.2 What Are the Reduction Potentials for the Electron Transport Chain? 542
- 20.3 How Are the Electron Transport Complexes Organized? 544

Cytochromes and Other Iron-Containing Proteins of Electron Transport 550

20.4 What Is the Connection between Electron Transport and Phosphorylation? 552

20.5 What Is the Mechanism of Coupling in Oxidative Phosphorylation? 554

Chemiosmotic Coupling 554
Conformational Aspects of Coupling 557

20.6 How Are Respiratory Inhibitors Used to Study Electron Transport? 557

Biochemical Connections: Brown Adipose Tissue: A Case of Useful Inefficiency 558

- 20.7 What Are Shuttle Mechanisms? 561
- 20.8 What Is the ATP Yield from Complete Oxidation of Glucose? 562

Biochemical Connections: Sports and Metabolism 563

Summary 565

Critical Questions to Review 565

Annotated Bibliography 567

21 | Lipid Metabolism 568

- 21.1 How Are Lipids Involved in the Generation and Storage of Energy? 568
- 21.2 How Are Lipids Catabolized? 568
- 21.3 What Is the Energy Yield from the Oxidation of Fatty Acids? 573
- 21.4 How Are Unsaturated Fatty Acids and Odd-Carbon Fatty Acids Catabolized? 576
- 21.5 What Are Ketone Bodies? 577

 Biochemical Connections: Ketone Bodies and
 Effective Weight Loss 579
- 21.6 How Are Fatty Acids Produced? 580
- 21.7 How Are Acylglycerols and Compound Lipids Produced? 586

Biochemical Connections: Acetyl-CoA Carboxylase— A New Target in the Fight against Obesity? 587 Triacylglycerols 587 Phosphoacylglycerols 587 Sphingolipids 589

Biochemical Connections: Tay-Sachs Disease 591

21.8 How Is Cholesterol Produced? 592

Cholesterol Is a Precursor of Other Steroids 597 The Role of Cholesterol in Heart Disease 599

Summary 601

Critical Questions to Review 602

Annotated Bibliography 603

22 | Photosynthesis 604

22.1 Where Does Photosynthesis Take Place in the Cell? 604

Biochemical Connections: The Relationship between Wavelength and Energy of Light 608

22.2 How Are Photosystems I and II Involved in the Light Reactions of Photosynthesis? 608

Photosystem II: Water Is Split to Produce Oxygen 609
Photosystem I: Reduction of NADP+ 612
Cyclic Electron Transport in Photosystem I 612
Structure of a Photosystem 613

- 22.3 How Does Photosynthesis Produce ATP? 615

 Biochemical Connections: Some Herbicides Inhibit
 Photosynthesis 616
- 22.4 What Are the Evolutionary Implications of Photosynthesis with and without Oxygen? 617
- 22.5 How Do the Dark Reactions of Photosynthesis Fix CO₂ into Glucose? 619

Production of Six-Carbon Sugars 621 Regeneration of Ribulose-1,5-*Bis*phosphate 621

Biochemical Connections: Chloroplast Genes 623

22.6 How Is CO₂ Fixed in Tropical Plants? 623

Summary 626

Critical Questions to Review 626

Annotated Bibliography 628

23 The Metabolism of Nitrogen 629

- 23.1 What Processes Constitute Nitrogen Metabolism? 629
- 23.2 How Is Nitrogen Incorporated into Biologically Useful Compounds? 631

Biochemical Connections: Nitrogen Fertilizers 631

23.3 What Role Does Feedback Inhibition Play in Nitrogen Metabolism? 633

23.4 How Are Amino Acids Synthesized? 634

General Features 634

Transamination Reactions: The Role of Glutamate and Pyridoxal Phosphate 635

One-Carbon Transfers and the Serine Family 638

23.5 What Are the Essential Amino Acids? 643

23.6 How Are Amino Acids Catabolized? 643

Disposition of the Carbon Skeletons 643 Excretion of Excess Nitrogen 644

The Urea Cycle 644

Biochemical Connections: Water and the Disposal of Nitrogen Wastes 646

23.7 How Are Purines Synthesized? 648

Anabolism of Inosine Monophosphate 648

Biochemical Connections: Chemotherapy and Antibiotics—Taking Advantage of the Need for Folic Acid 649

The Conversion of IMP to AMP and GMP 649
Energy Requirements for Production of AMP and GMP 651

23.8 How Are Purines Catabolized? 651 Biochemical Connections: Lesch-Nyhan Syndrome

23.9 How Are Pyrimidines Synthesized and Catabolized? 654

The Anabolism of Pyrimidine Nucleotides 654 Pyrimidine Catabolism 656

23.10 How Are Ribonucleotides Converted to Deoxyribonucleotides? 657

23.11 How Is dUDP Converted to dTTP? 658

Summary 659

Critical Questions to Review 659

Annotated Bibliography 661

24 Integration of Metabolism: Cellular Signaling 662

24.1 How Are the Metabolic Pathways Connected? 662

24.2 How Can Biochemistry Help Us Understand Nutrition? 663

Required Nutrients 663

Biochemical Connections: Alcohol Consumption and Addiction 664

The Food Pyramid 667

Biochemical Connections: Iron: An Example of a Mineral Requirement 667

Obesity 670

24.3 What Are Hormones and Second Messengers? 670

Hormones 670

Second Messengers 674

Cyclic AMP and G Proteins 674

Calcium Ion as a Second Messenger 677

Receptor Tyrosine Kinases 679

Biochemical Connections: Small G Proteins and the Ras Family 680

24.4 How Are Hormones Involved in the Control of Metabolism? 680

Biochemical Connections: Insulin and Low-Carbohydrate Diets 682

24.5 What Are the Many Effects of Insulin? 684

Insulin Structure 684

Insulin Receptors 684

Insulin's Effect on Glucose Uptake 684

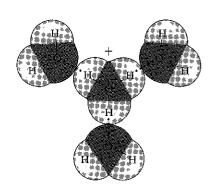
Insulin Affects Many Enzymes 684

Diabetes 685

Insulin and Sports 686

Biochemical Connections: A Workout a Day Keeps Diabetes Away? 686

Summary 687


Critical Questions to Review 687

Annotated Bibliography 689

Glossary G-1

Answers to Questions A-1

Index 1-1

