EDITORS IMRICH CHLAMTAC ASHWIN GUMASTE, CSABA A. SZABÓ

Broadband Services

Business Models and Technologies for Community Networks

Contents

Fo	Foreword		
Ab	oout the Editors	xvii	
Li	st of Contributors	xix	
Ac	cknowledgments	xxv	
1	Introduction	1	
	Imrich Chlamtac, Ashwin Gumaste and Csaba A. Szabó		
	1.1 What is broadband?	1	
	1.2 The objectives of this book	3	
	1.3 Book outline	4	
Pa	art One Applications and Services	9	
2	Broadband Home/Entertainment Services	11	
	Arieh Moller and Roy Isacowitz		
	2.1 Introduction	11	
	2.2 Current broadband and home entertainment markets	12	
	2.2.1 Television	13	
	2.2.2 Mobile	14	
	2.2.3 Consumer products	15	
	2.3 What drives broadband?	15	
	2.4 Future broadband entertainment services	17	
	2.4.1 Television and video	18	
	2.4.2 Games	18	
	2.4.3 Music	19	
	2.4.4 Gambling	19	
	2.4.5 Internet	20	
	2.4.6 Mobile	21	
	2.5 Consumer demographics	22	
	2.6 Paying for content	23	
	2.7 Security standards	24	
	2.7.1 DVB (www.dvb.org)	24	
	2 7 2 3GPP (www 3gpn arg)	24	

vi

	2.7.3 3GPP2 (www.3gpp2.org)	24
	2.7.4 OMA – Open Mobile Alliance (www.openmobilealliance.org)	25
	2.7.5 TCG (www.trustedcomputinggroup.org)	25
	2.7.6 SVP (www.svp-cp.org)	25
	2.7.7 WPA (www.wifialliance.com/OpenSection/protected_access.asp)	25
	2.8 Summary	25
3	Applications and Services to Meet Society-Related Needs	27
	Csaba A. Szabó	
	3.1 Introduction	27
	3.2 E-education applications	28
	3.2.1 Virtual classrooms	28
	3.2.2 Web-based learning	29
	3.2.3 Technology of e-education	30
	3.3 Telemedicine applications	33
	3.3.1 What is telemedicine?	33
	3.3.2 Overview of telemedicine applications	34
	3.3.3 Requirements when transmitting medical diagnostic information	36
	3.3.4 Videoconferencing in telemedicine	39
	3.3.5 How does society benefit from telemedicine?	42
	3.4 E-government applications	42
	3.4.1 Overview	42
	3.4.2 Providing access to e-government services	43
	3.5 Summary	44
Pa	art Two Business Models	47
4	Key Legal and Regulatory Issues Affecting Community Broadband	
	Projects in the United States	49
	Sean A. Stokes and Jim Baller	
	4.1 Introduction	49
	4.2 The benefits of public fiber-to-the-home (FTTH) systems	49
	4.3 Burdens and risks of public broadband systems	50
	4.4 Legal authority of public entities to provide communication services	51
	4.4.1 Federal law encourages, but does not affirmatively empower,	
	local governments to provide communications services	53
	4.4.2 State laws affecting the authority of public entities to provide	
	communications services	56
	4.4.3 Local restrictions	58
	4.5 Involvement models and structures	58
	4.6 Other considerations	59
	4.7 Federal regulatory issues	60
	4.7.1 Key definitions	60
	4.7.2 Implications of key definitions	61
	4.7.3 Access to incumbent network elements under Section $251(c)(3)$	63
	4.7.4 Pole attachments	64

	4.7.5 Universal service	65
	4.7.6 Other important federal provisions	66
	4.8 State regulatory issues	67
	4.8.1 Certification	67
	4.8.2 Tariffs	67
	4.8.3 Annual reports	67
	4.8.4 Universal service and other contributions	67
	4.8.5 Regulatory fees	68
	4.8.6 Interconnection agreements	68
	4.9 Summary	68
5	European Telecommunication Law and Community Networks	69
-	Giovanni Pascuzzi and Andrea Rossato	
	5.1 Introduction	69
	5.2 Historical background	70
	5.2.1 The liberalization period	70
	5.2.2 The harmonization effort	71
	5.3 The New Regulatory Framework	73
	5.3.1 Liberalization	74
	5.3.2 National Regulatory Authorities	75
	5.3.3 General authorization	76
	5.3.4 Access and interconnection	77
	5.3.5 Universal service	78
	5.3.6 Radio local area networks	79
	5.3.7 E-privacy	79
	5.4 Member States' implementation: the Italian case	80
	5.4.1 The Italian Electronic Communications Code	80
	5.4.2 Internet service provision	82
	5.4.3 Radio local area networks	83
	5.4.4 A case study: Provincia Autonoma di Trento and	
	Informatica Trentina	83
	5.5 Summary	83
6	Models for Public Sector Involvement in Regional and Local	
	Broadband Projects	85
	Gareth Hughes	
	6.1 Introduction	85
	6.2 Overview of models for public involvement	85
	6.2.1 Community-operated networks and services	86
	6.2.2 Carrier's carrier model	87
	6.2.3 Passive infrastructure model	88
	6.2.4 Fiber condominium	89
	6.2.5 Aggregation of demand	90
	6.2.6 Summary of models	91
	6.3 Financial profiles of different models	91
	6.4 Public-private partnerships	93

	6.5 Legal and economic considerations relating to models	94
	6.5.1 Aggregation of public sector demand	95
	6.5.2 Financial aid to an operator	95
	6.5.3 Community-operated networks and services	96
	6.5.4 Carrier's carrier model	96
	6.5.5 Passive infrastructure model	96
	6.6 Summary	101
7	Customer-Owned and Municipal Fiber Networks	103
	Bill St. Arnaud	
	7.1 Introduction	103
	7.1.1 Customer-owned dark fiber	103
	7.1.2 Condominium fiber	104
	7.1.3 Community or municipal fiber networks	105
	7.2 Advantages of customer-owned dark fiber/municipal fiber to different	
	users and businesses	105
	7.2.1 Public institutions	105
	7.2.2 Business organizations	107
	7.2.3 Office building owners and managers	108
	7.2.4 Consumers or home owners	109
	7.2.5 Municipalities and governments	110
	7.3 Deployment of municipal fiber networks	110
	7.3.1 Rights of way and Municipal Access Agreements (MAAs)	110
	7.3.2 Carrier neutral collocation facilities	111
	7.3.3 Equipment to light up dark fiber	112
	7.4 Cost analysis	112
	7.4.1 Overview	112
	7.4.2 Some detailed cost components of customer-owned dark fiber	113
	7.4.3 Ongoing yearly costs for customer-owned dark fiber	115
	7.5 Operation and management	116
	7.5.1 Reliability of dark fiber	116
	7.5.2 Operation and maintenance	116
	7.6 Summary	117
8	Towards a Technologically and Competitively Neutral	440
	Fiber-to-the-Home (FTTH) Infrastructure	119
	Anupam Banerjee and Marvin Sirbu	110
	8.1 Introduction	119
	8.2 Models for competition in telecommunications	120
	8.2.1 Facilities-based competition	120
	8.2.2 Non facilities-based competition or service level competition	120
	8.3 Fiber-to-the-home architectures	121
	8.3.1 Home run fiber	122
	8.3.2 Active star	123
	8.3.3 Passive star (passive optical network–PON)	123
	8.3.4 WDM passive optical networks	126

Contents ix

	8.4 Econ	omics of fiber-to-the-home	126
	-	Cost model assumptions	126
		Cost model results	127
		OFAP as a real option: PON design under uncertainty	127
		Sensitivity analysis	131
		petition, FTTH architecture and industry structure	132
		Facilities-based competition	132
	8.5.2	Competition at the optical layer	132
	8.5.3	Data link layer (UNE-based) competition	133
		Network (and higher) layer-based (open access) competition	134
	8.5.5	Why UNE-based competition may be preferable to open	
		access-based competition	134
	8.5.6	Necessary conditions for competition in FTTH	135
	8.5.7	Industry structure, fiber ownership and competition	136
	8.6 Sum	mary	138
Pa	rt Three	Technology	141
9	Rockhor	e Optical Network Design for Community Networks	143
7		Gumaste, Csaba A. Szabó and Imrich Chlamtac	- 7.0
	9.1 Intro		143
		gn considerations for community metro networks	144
		The first generation metro rings	145
		The WDM solution	147
		The Ethernet solution	148
		Resilient packet rings (RPR)	152
		ctions of the backbone: aggregation and transport – evolution	
		e MSPP and MSTP concepts	152
		optical backbone: design and elements	155
		Routing and wavelength assignment: a problem for	
		interconnected ring networks	156
	9.4.	2 Mesh optical networks	156
		Ring network element design considerations	157
	9.4	Fixed OADMs (FOADMs)	157
	9.4	5 Reconfigurable OADMs (ROADMs)	157
	9.4.	6 Dynamic OADMs (DOADMs)	157
	9.4.	7 Architectural notes on ring OADMs	158
	9.5 Des	ign considerations for the community backbone	159
	9.6 Sun	nmary	161
10	_	parison of the Current State of DSL Technologies	163
		Valcourt	1/2
		roduction	163
		OSL vision and history	164
		OSL technology	165
	10.4 SF	IDSL technology	168

x			Contents

		VDSL technology	169
		The best technology	170
	10.7	DSL community networks	170
	10.8	Summary	172
11	Fiber	r in the Last Mile	173
	Ashu	in Gumaste, Nasir Ghani and Imrich Chlamtac	
	11.1	Introduction	173
	11.2	Topological and architectural model for PON systems: associated	
		nomenclature	174
	11.3	Types of passive optical network	175
		11.3.1 ATM, or broadband PONs	175
		11.3.2 EPONs, or Ethernet PONs	176
		11.3.3 WDM PONs	177
	11.4	Optical signal details to be considered while designing a PON system	178
		11.4.1 Optical signal-to-noise ratio	179
		Components for PON systems	179
	11.6	Protocol requirements for OLT-ONU interaction	183
		11.6.1 Transmission upon reception (TUR)	183
		11.6.2 IPACT: interleaved polling with adaptive cycle time	183
	11.7	MPCP classifications and requirements	184
		11.7.1 Dynamic provisioning	184
		11.7.2 Fairness	184
		11.7.3 QoS	185
		11.7.4 Stability and convergence	185
		11.7.5 SLA provisioning	185
	11.8	Summary	185
12	Ethe	ernet in the First Mile	187
	Wae.	! William Diab	
	12.1	Introduction	187
	12.2	Overview of the IEEE, the process and the 802.3 Working Group	187
		12.2.1 The LMSC	187
		12.2.2 The Ethernet Working Group and the IEEE process	188
		12.2.3 A brief discussion on the five criteria	188
	12.3	Overview of the EFM Task Force and timeline	189
		12.3.1 P802.3ah: overview of EFM	189
		12.3.2 Practically, why is 802.3ah important?	189
		12.3.3 Timeline of the EFM project	190
	12.4	Overview of OAM	190
		12.4.1 High-level architecture	190
		12.4.2 Functionality	191
		12.4.3 Single link management	191
		12.4.4 Restrictions	192
	12.5	Overview of copper	192
		12.5.1 High-level architecture	192

	1	2.5.2 More on the specifics of each type of copper link	193
	1	2.5.3 Support for multiple pairs	193
	12.6 C	Overview of optics	193
	1	2.6.1 High-level summary	193
		2.6.2 High-level architecture: common motivations	194
	I	2.6.3 Detailed description of the optical devices	194
		2.6.4 Philosophy for both single and dual fiber 100 M	195
	1	2.6.5 Philosophy for dual wavelength for the single fiber solutions	195
	1	2.6.6 Differences between the 100 M and 1 Gigabit point-to-point	
		solutions	196
	1	2.6.7 New requirements for EPONs	197
	1	2.6.8 Optical reach	197
	1	2.6.9 Extended temperature	197
	12.7	Overview of EPONs: the logic behind P2MP	198
	1	2.7.1 High-level architecture	198
	1	2.7.2 A note on terminology	198
	1	2.7.3 MPCP: a more detailed discussion	199
	1	2.7.4 The functional responsibilities of the ONU and OLT	199
	12.8 \$	Summary	200
13	DOCS	SIS as a Foundation for Residential and Commercial	
	Comn	nunity Networking over Hybrid Fiber Coax	201
	Steven	Fulton, Chaitanya Godsay and Radim Bartoš	
	13.1 I	ntroduction	201
	Ì	3.1.1 Distribution distance	202
	i	13.1.2 Frequency range	202
		13.1.3 Broadband deployment growth	204
		13.1.4 Broadband deployment future	204
		Provisioning process for DOCSIS connections	206
		13.2.1 DOCSIS provisioning basics	207
		13.2.2 Ranging and registration	208
		13.2.3 Upstream data transmission	210
	a a	13.2.4 Downstream data transmission	213
	13.3	Summary	213
14	Broad	lband Wireless Access Networks: a Roadmap on Emerging	
		s and Standards	215
	Enzo I	Baccarelli, Mauro Biagi, Raffaele Bruno, Marco Conti and Enrico Gregori	
		Introduction	215
		What is Broadband Wireless Access?	216
		14.2.1 QoS requirements for BWA	216
		14.2.2 A 'workable' definition of BWA	217
		14.2.3 BWA in personal, local, metropolitan and wide area networks	217
		Technologies for WPANs: the 802.15 standards	218
		14.3.1 IEEE 802.15.1: a Bluetooth-based WPAN	218
		14.3.2 High-rate WPANs: the IEEE 802.15.3 standard	219

	14.4	Emerging 4G WLANs	220
		14.4.1 Technologies for 4G WLANs: the IEEE 802.11 standards	221
		14.4.2 Network architectures	222
		14.4.3 High-speed WLANs: 802.11a and 802.11g	222
		14.4.4 Quality of Service in 4G WLANs: the 802.11e standard	224
		14.4.5 Future directions	226
	14.5	Wireless backbone and wireless local loop: the IEEE 802.16 standards	228
		14.5.1 Service scenarios and network architectures	229
		14.5.2 Physical layer for wireless backbone	232
		14.5.3 Future directions	233
	14.6	Satellite access and services	235
		14.6.1 Geosynchronous Earth orbit (GEO) satellites and	
		video broadcasting	235
		14.6.2 Towards broadband low Earth orbit (LEO) satellites	236
	14.7	Summary: future BWA roadmap and diverse technology landscape	237
Pa	rt Foi	ır Case Studies	241
15		munity Case Studies in North America	243
		a Shetty and Ashwin Gumaste	2.12
		Introduction	243
	15.2	Issues affecting community network design	244
		15.2.1 Technology considerations	244
		15.2.2 Business considerations	245
		15.2.3 Social issues	245
	15.3	Case studies	246
		15.3.1 Case study 1: Douglas County School System, Georgia	246
		15.3.2 Case study 2: Washington's DC-Net through MCI	248
		15.3.3 Case study 3: broadband power line system in Cape	
		Girardeau, Missouri	250
		15.3.4 Case study 4: wireless broadband community network for	
		City of oceanside, California	251
		15.3.5 Case study 5: citywide wireless network for Mount	
		Pleasant, Michigan	252
	15.4	Summary	254
16	Euro	opean Broadband Initiatives with Public Participation	255
	Csat	pa A. Szabó	
	16.1	Introduction	255
	16.2	Stokab's dark fiber metro net in the Stockholm region – a profitable	
		project in business terms	256
		16.2.1 Overview	256
		16.2.2 Connection provisioning and pricing	257
		16.2.3 Collocation and location services	257
		16.2.4 Customers	257
	16.3	FastWeb – a new generation of telecommunications networks and services	258

Contents		
16.4	Community networks based on PLC: the Endesa field trials in Spain	
	16.4.1 Why PLC?	
	16.4.2 Network technology using PLC	
	16.4.3 Business models	
	16.4.4 The mass field trial in Zaragoza	
16.5	Broadband to rural areas via satellite - the South West Broadband	
	Programme in Ireland	
16.6	Regional broadband aggregation in the UK	

16.7 Summary

Index

xiii