INTERNATIONAL EDITION Introduction to The Design & Analysis of Algorithms Anany Levitin | | Preface | xix | |-----|---|--| | 1 | Introduction | 1 | | 1.1 | Notion of Algorithm Exercises 1.1 | 3
8 | | 1.2 | Fundamentals of Algorithmic Problem Solving Understanding the Problem Ascertaining the Capabilities of a Computational Device Choosing between Exact and Approximate Problem Solving Deciding on Appropriate Data Structures Algorithm Design Techniques Methods of Specifying an Algorithm Proving an Algorithm's Correctness Analyzing an Algorithm Coding an Algorithm Exercises 1.2 | 9 11 11 12 12 13 13 14 15 | | 1.3 | Important Problem Types Sorting Searching String Processing Graph Problems Combinatorial Problems Geometric Problems Numerical Problems Exercises 1.3 | 19
20
21
21
22
22
23
23 | | 1.4 | Fundamental Data Structures Linear Data Structures | 26
26 | |-----|--|-----------------| | | Graphs | 28 | | | Trees Sets and Dictionaries | 32 | | | | 35 | | | Exercises 1.4 | 37 | | | Summary | 39 | | 2 | Fundamentals of the Analysis of Algorithm | | | | Efficiency | 41 | | 2.1 | Analysis Framework | 42 | | | Measuring an Input's Size | 43 | | | Units for Measuring Running Time | 44 | | | Orders of Growth | 45 | | | Worst-Case, Best-Case, and Average-Case Efficiencies | 47 | | | Recapitulation of the Analysis Framework | 50 | | | Exercises 2.1 | 50 | | 2.2 | Asymptotic Notations and Basic Efficiency Classes | 52 | | | Informal Introduction | 52 | | | O-notation | 53 | | | Ω-notation Θ-notation | 54 | | | | 55 | | | Useful Property Involving the Asymptotic Notations Using Limits for Comparing Orders of Growth | 56 | | | Basic Efficiency Classes | 57 | | | Exercises 2.2 | 58 | | | · · · · · · · · · · · · · · · · · · · | 59 | | 2.3 | Mathematical Analysis of Nonrecursive Algorithms | 61 | | | Exercises 2.3 | 67 | | 2.4 | Mathematical Analysis of Recursive Algorithms | 69 | | | Exercises 2.4 | 76 | | 2.5 | Example: Fibonacci Numbers | 78 | | | Explicit Formula for the nth Fibonacci Number | 79 | | | Algorithms for Computing Fibonacci Numbers | 81 | | | Exercises 2.5 | 83 | | | Contents | xi | |-----|---|--| | 2.6 | Empirical Analysis of Algorithms Exercises 2.6 | 84
90 | | 2.7 | Algorithm Visualization Summary | 91
95 | | 3 | Brute Force | 97 | | 3.1 | Selection Sort and Bubble Sort Selection Sort Bubble Sort Exercises 3.1 | 98
99
100
102 | | 3.2 | Sequential Search and Brute-Force String Matching Sequential Search Brute-Force String Matching Exercises 3.2 | 103
103
104
105 | | 3.3 | Closest-Pair and Convex-Hull Problems by Brute Force Closest-Pair Problem Convex-Hull Problem Exercises 3.3 | 107
107
108
111 | | 3.4 | Exhaustive Search Traveling Salesman Problem Knapsack Problem Assignment Problem Exercises 3.4 Summary | 113
113
115
115
118
119 | | 4 | Divide-and-Conquer | 121 | | | Mergesort Exercises 4.1 | 124
126 | | 4.2 | Quicksort Exercises 4.2 | 127
132 | | 4.3 | Binary Search Exercises 4.3 | 133
136 | | 4.4 | Binary Tree Traversals and Related Properties
Exercises 4.4 | 138
140 | |-----|---|---| | 4.5 | Multiplication of Large Integers and Strassen's Matrix Multiplication Multiplication of Large Integers Strassen's Matrix Multiplication Exercises 4.5 | 142
142
144
146 | | 4.6 | Closest-Pair and Convex-Hull Problems by Divide-and-Conquer Closest-Pair Problem Convex-Hull Problem Exercises 4.6 Summary | 147
147
148
151
152 | | 5 | Decrease-and-Conquer | 155 | | 5.1 | Insertion Sort Exercises 5.1 | 158
161 | | 5.2 | Depth-First Search and Breadth-First Search Depth-First Search Breadth-First Search Exercises 5.2 | 162
163
165
168 | | 5.3 | Topological Sorting Exercises 5.3 | 170
173 | | 5.4 | Algorithms for Generating Combinatorial Objects Generating Permutations Generating Subsets Exercises 5.4 | 175
175
177
179 | | 5.5 | Decrease-by-a-Constant-Factor Algorithms Fake-Coin Problem Multiplication à la Russe Josephus Problem Exercises 5.5 | 180
180
181
182
184 | | 5.6 | Variable-Size-Decrease Algorithms Computing a Median and the Selection Problem | 185
185 | | | C | Contents | iiix | |-----|---|----------|---| | | Interpolation Search
Searching and Insertion in a Binary Search Tree | | 187
188 | | | Exercises 5.6
Summary | | 189
190 | | 6 | Transform-and-Conquer | | 193 | | 6.1 | Presorting Exercises 6.1 | | 194
197 | | 6.2 | Gaussian Elimination LU Decomposition and Other Applications Computing a Matrix Inverse Computing a Determinant Exercises 6.2 | | 199
204
205
206
207 | | 6.3 | Balanced Search Trees AVL Trees 2-3 Trees Exercises 6.3 | • | 209
210
215
217 | | 6.4 | Heaps and Heapsort Notion of the Heap Heapsort Exercises 6.4 | | 218 218 223 224 | | 6.5 | Horner's Rule and Binary Exponentiation Horner's Rule Binary Exponentiation Exercises 6.5 | on | 225
226
228
231 | | 6.6 | Problem Reduction Computing the Least Common Multiple Counting Paths in a Graph Reduction of Optimization Problems Linear Programming Reduction to Graph Problems Exercises 6.6 Summary | | 232
233
234
235
236
239
240 | | | Summary | | 242 | | 7 | Space and Time Tradeoffs | 245 | |-----|--|-----| | 7.1 | Sorting by Counting | 247 | | | Exercises 7.1 | 250 | | 7.2 | Input Enhancement in String Matching | 251 | | | Horspool's Algorithm | 252 | | | Boyer-Moore Algorithm | 255 | | | Exercises 7.2 | 259 | | 7.3 | Hashing | 261 | | | Open Hashing (Separate Chaining) | 262 | | | Closed Hashing (Open Addressing) | 264 | | | Exercises 7.3 | 266 | | 7.4 | B-Trees | 267 | | | Exercises 7.4 | 271 | | | Summary | 272 | | 8 | Dynamic Programming | 275 | | 8.1 | Computing a Binomial Coefficient | 277 | | | Exercises 8.1 | 278 | | 8.2 | Warshall's and Floyd's Algorithms | 280 | | | Warshall's Algorithm | 280 | | | Floyd's Algorithm for the All-Pairs Shortest-Paths Problem | 284 | | | Exercises 8.2 | 288 | | 8.3 | Optimal Binary Search Trees | 289 | | | Exercises 8.3 | 294 | | 8.4 | The Knapsack Problem and Memory Functions | 295 | | | Memory Functions | 297 | | | Exercises 8.4 | 299 | | | Summary | 300 | | | | | | | | Contents | XV | |------|---|----------|--| | 9 | Greedy Technique | | 303 | | 9.1 | Prim's Algorithm
Exercises 9.1 | | 305
309 | | 9.2 | Kruskal's Algorithm Disjoint Subsets and Union-Find Algorithms Exercises 9.2 | | 311
314
318 | | 9.3 | Dijkstra's Algorithm
Exercises 9.3 | | 319
322 | | 9.4 | Huffman Trees
Exercises 9.4
Summary | | 324
328
329 | | 10 | Limitations of Algorithm Power | | 331 | | | Lower-Bound Arguments Trivial Lower Bounds Information-Theoretic Arguments Adversary Arguments Problem Reduction Exercises 10.1 | • | 332
333
334
334
336
337 | | 10.2 | Decision Trees Decision Trees for Sorting Algorithms Decision Trees for Searching a Sorted Array Exercises 10.2 | | 339
340
342
344 | | 10.3 | P, NP, and NP-complete Problems P and NP Problems NP-complete Problems Exercises 10.3 | | 345
346
351
353 | | 10.4 | Challenges of Numerical Algorithms Exercises 10.4 Summary | ; | 356
363
364 | | | | Contents | xvi | |----|---|----------|-----| | AP | PENDIX B | | | | | Short Tutorial on Recurrence Relati | ions | 417 | | | Sequences and Recurrence Relations | | 417 | | | Methods for Solving Recurrence Relations | | 418 | | | Common Recurrence Types in Algorithm Analys | sis | 423 | | | Bibliography | | 431 | | | Hints to Exercises | | 439 | | | Index | | 479 |