



## Power Laws in the Information Production Process: Lotkaian Informetrics

## TABLE OF CONTENTS

| Prefac  | e                                                                           | vii |
|---------|-----------------------------------------------------------------------------|-----|
| Table   | of contents                                                                 | хi  |
| Introd  | luction                                                                     | 1   |
| Chapt   | er I Lotkaian Informetrics: An Introduction                                 | 7   |
| I.1 Inf | formetrics                                                                  | 7   |
| 1.2 W   | hat is Lotkaian informetrics ?                                              | 14  |
| I.2.1   | The law of Lotka                                                            | 14  |
| 1.2.2   | Other laws that are valid in Lotkaian informetrics                          | 19  |
| 1.3 W   | hy Lotkaian informetrics ?                                                  | 25  |
| 1.3.1   | Elementary general observations                                             | 26  |
| I.3.2   | The scale-free property of the size-frequency function f                    | 27  |
| I.3.3   | Power functions versus exponential functions for the size-frequency         |     |
|         | function f                                                                  | 32  |
| I.3.4   | Proof of Lotka's law based on exponential growth or based on                |     |
|         | exponential obsolescence                                                    | 34  |
|         | I.3.4.1 Proof of Lotka's law based on exponential growth: the Naranan       |     |
|         | model                                                                       | 34  |
|         | I.3.4.2 Proof of Lotka's law based on exponential obsolescence: solution    |     |
|         | of a problem of Buckland                                                    | 40  |
| I.3.5   | Derivation of Mandelbrot's law for random texts                             | 42  |
| I.3.6   | "Success Breeds Success"                                                    | 45  |
|         | I.3.6.1 The urn model                                                       | 46  |
|         | I.3.6.2 General definition of SBS in general IPPs                           | 49  |
|         | I.3.6.3 Approximate solutions of the general SBS                            | 52  |
|         | I.3.6.4 Exact results on the general SBS and explanation of its real nature | 5:  |

vii

| [.3.7  | Entropy aspects                                                          | 65  |
|--------|--------------------------------------------------------------------------|-----|
|        | 1.3.7.1 Entropy: definition and properties                               | 66  |
|        | I.3.7.2 The Principle of Least Effort (PLE) and its relation with the    |     |
|        | law of Lotka                                                             | 70  |
|        | I.3.7.3 The Maximum Entropy Principle (MEP)                              | 76  |
|        | 1.3.7.4 The exact relation between (PLE) and (MEP)                       | 78  |
| I.4 Pr | actical examples of Lotkaian informetrics                                | 85  |
| 1.4.1  | Important remark                                                         | 85  |
| I.4.2  | Lotka's law in the informetrics and linguistics literature               | 86  |
| 1.4.3  | Lotka's law in networks                                                  | 87  |
| I.4.4  | Lotka's law and the number of authors per paper                          | 90  |
| I.4.5  | Time dependence and Lotka's law                                          | 92  |
| I.4.6  | Miscellaneous examples of Lotkaian informetrics                          | 94  |
| I.4.7  | Observations of the scale-free property of the size-frequency function f | 98  |
| Chap   | ter II Basic Theory of Lotkaian Informetrics                             | 101 |
| II.1 ( | General informetrics theory                                              | 101 |
| H.1.1  | Generalized bibliographies: Information Production Processes (IPPs)      | 101 |
| II.1.2 | General informetric functions in an IPP                                  | 104 |
| II.1.3 | General existence theory of the size-frequency function                  | 110 |
| II.2 T | Theory of Lotkaian informetrics                                          | 114 |
| 11.2.1 | Lotkaian function existence theory                                       | 114 |
|        | II.2.1.1 The case $\rho_{\rm m} = \infty$                                | 114 |
|        | II.2.1.2 The general case $\rho_{\rm m} < \infty$                        | 116 |
| II.2.2 | The informetric functions that are equivalent with a Lotkaian            |     |
|        | size-frequency function f                                                | 121 |

| II.3 Extension of the general informetrics theory: the dual size-frequency |                                                                          |     |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-----|
|                                                                            | function h                                                               | 144 |
| II.4 T                                                                     | he place of the law of Zipf in Lotkaian informetrics                     | 150 |
| II.4.1                                                                     | Definition and existence                                                 | 150 |
| II.4.2                                                                     | Functions that are equivalent with Zipf's law                            | 152 |
| Chapt                                                                      | ter III Three-dimensional Lotkaian Informetrics                          | 157 |
| 111.1 7                                                                    | Three-dimensional informetrics                                           | 157 |
| III.1.1                                                                    | The case of two source sets and one item set                             | 158 |
| III.1.2                                                                    | The case of one source set and two item sets                             | 159 |
| ш.1.3                                                                      | The third case: linear three-dimensional informetrics                    | 161 |
|                                                                            | III.1.3.1 Positive reinforcement                                         | 163 |
|                                                                            | III.1.3.2 Type/Token-Taken informetrics                                  | 168 |
| III.1.4                                                                    | General notes                                                            | 172 |
| III.2 I                                                                    | Linear three-dimensional Lotkaian informetrics                           | 175 |
| III.2.1                                                                    | Positive reinforcement in Lotkaian informetrics                          | 175 |
| III.2.2                                                                    | Lotkaian Type/Token-Taken informetrics                                   | 177 |
| Chap                                                                       | ter IV Lotkaian Concentration Theory                                     | 187 |
| IV.1 I                                                                     | Introduction                                                             | 187 |
| IV.2 I                                                                     | Discrete concentration theory                                            | 192 |
| IV.3 (                                                                     | Continuous concentration theory                                          | 196 |
| IV.3.1                                                                     | General theory                                                           | 196 |
| IV.3.2                                                                     | 2 Lotkaian continuous concentration theory                               | 199 |
|                                                                            | IV.3.2.1 Lorenz curves for power laws                                    | 199 |
|                                                                            | IV.3.2.2 Concentration measures for power laws                           | 205 |
| IV.3.3                                                                     | B A characterization of Price's law of concentration in terms of Lotka's |     |
|                                                                            | law and of Zipf's law                                                    | 214 |

| IV.4 C | oncentration theory of linear three-dimensional informetrics        | 218 |
|--------|---------------------------------------------------------------------|-----|
|        | The concentration of positively reinforced IPPs                     | 219 |
|        | Concentration properties of Type/Token-Taken informetrics           | 226 |
| Chapte | er V Lotkaian Fractal Complexity Theory                             | 231 |
| V.1 In | troduction                                                          | 231 |
| V.2 El | ements of fractal theory                                            | 232 |
|        | Fractal aspects of a line segment, a rectangle and a parallelepiped | 233 |
|        | The triadic von Koch curve and its fractal properties. Extension to |     |
|        | general self-similar fractals                                       | 234 |
| V.2.3  | Two general ways of expressing fractal dimensions                   | 236 |
|        | V.2.3.1 The Hausdorff-Besicovitch dimension                         | 236 |
|        | V.2.3.2 The box-counting dimension                                  | 239 |
| V.3 11 | nterpretation of Lotkaian IPPs as self-similar fractals             | 242 |
| Chap   | ter VI Lotkaian Informetrics of Systems in which Items can have     |     |
| •      | Multiple Sources                                                    | 247 |
| VI.1   | Introduction                                                        | 247 |
| VI.2   | Crediting systems and counting procedures for sources and "super    |     |
|        | sources" in IPPs where items can have multiple sources              | 253 |
| VI.2.  | 1 Overview of crediting systems for sources                         | 254 |
|        | VI.2.1.1 First or senior author count                               | 254 |
|        | VI.2.1.2 Total author count                                         | 254 |
|        | VI.2.1.3 Fractional author count                                    | 255 |
|        | VI.2.1.4 Proportional author count                                  | 255 |
|        | VI.2.1.5 Pure geometric author count                                | 255 |
|        | VI.2.1.6 Noblesse Oblige                                            | 256 |
| VI.2   | .2 Crediting systems for super sources                              | 256 |

|                                                                      | Table of contents | XV  |
|----------------------------------------------------------------------|-------------------|-----|
| VI.2.3 Counting procedures for super sources in an IPP               |                   | 256 |
| VI.2.3.1 Total counting                                              |                   | 257 |
| VI.2.3.2 Fractional counting                                         |                   | 258 |
| VI.2.3.3 Proportional counting                                       |                   | 258 |
| VI.2.4 Inequalities between $Q_{T}(c)$ and $Q_{F}(c)$ and conseq     | uences for the    |     |
| comparison of $Q_{_{T}}(c),Q_{_{F}}(c)$ and $Q_{_{P}}(c)$            |                   | 261 |
| VI.2.5 Solutions to the anomalies                                    |                   | 266 |
| VI.2.5.1 Partial solutions                                           |                   | 267 |
| VI.2.5.2 Complete solution to the encountered anor                   | nalies            | 269 |
| VI.2.6 Conditional expectation results on $Q_{T}(c)$ , $Q_{F}(c)$ as | nd $Q_P(c)$       | 270 |
| VI.3 Construction of fractional size-frequency functions             | based on two dual |     |
| Lotka laws                                                           |                   | 276 |
| VI.3.1 Introduction                                                  |                   | 276 |
| VI.3.2 A continuous attempt: $z \in \mathbb{R}^+$                    |                   | 278 |
| VI.3.3 A rational attempt: $q \in \mathbb{Q}^+$                      |                   | 282 |
| Chapter VII Further Applications in Lotkaian Informe                 | trics             | 295 |
| VII.1 Introduction                                                   |                   | 295 |
| VII.2 Explaining "regularities"                                      |                   | 297 |
| VII.2.1 The arcs at the end of a Leimkuhler curve                    |                   | 297 |
| VII.2.2 A "type/token-identity" of Chen and Leimkuhler               |                   | 298 |
| VII.3 Probabilistic explanation of the relationship betw             | een citation age  |     |
| and journal productivity                                             |                   | 300 |

Appendix I

Appendix II

365

370

| Appendix III Statistical determination of the parameters in the                                 |     |
|-------------------------------------------------------------------------------------------------|-----|
| law of Lotka                                                                                    | 372 |
| A.III.1 Statement of the problem                                                                | 372 |
| A.III.2 The problem of incomplete data (samples) and Lotkaian informetrics                      | 373 |
| A.III.3 The difference between the continuous Lotka function and the discrete                   |     |
| Lotka function                                                                                  | 378 |
| A.III.4 Statistical determination of the parameters $K$ , $a$ , $n_{max}$ in the discrete Lotka | Į.  |
| function $K/n^a$ , $n = 1,,n_{max}$                                                             | 386 |
| A.III.4.1 Quick and Dirty methods                                                               | 387 |
| A.III.4.2 Linear Least Squares method                                                           | 388 |
| A.III.4.3 Maximum Likelihood Estimating method                                                  | 390 |
| A.III.5 General remarks                                                                         | 393 |
| A.III.5.1 Fitting Zipf's function                                                               | 393 |
| A.III.5.2 The estimation of $\rho_m$ and $n_{max}$                                              | 394 |
| A.III.5.3 Fitting derived functions such as Price's law                                         | 394 |
| A.III.5.4 Goodness-of-fit tests                                                                 | 395 |
| Bibliography                                                                                    | 397 |
| Subject Index                                                                                   | 423 |