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ABSTRACT 
In this paper, we present a three-dimensional (3D) hyperspectral image compression algorithm based on 

zeroblock coding and wavelet transforms. An efficient Asymmetric 3D wavelet Transform (AT) based on the lifting 
technique and packet transform is used to reduce redundancies in both the spectral and spatial dimensions. The 
implementation via 3D integer lifting scheme allows to map integer-to-integer values, enabling lossy and lossless 
decompression from the same bit stream. To encode these coefficients after Asymmetric 3D wavelet transform, a 
modified 3DSPECK algorithm – Asymmetric Transform 3D Set Partitioning Embedded bloCK (AT-3DSPECK) is 
proposed. According to the distribution of energy of the transformed coefficients, the 3DSPECK’s 3D set 
partitioning block algorithm and the 3D octave band partitioning scheme are efficiently combined in the proposed 
AT-3DSPECK algorithm. Several AVIRIS images are used to evaluate the compression performance. Compared 
with the JPEG2000, AT-3DSPIHT and 3DSPECK lossless compression techniques, the AT-3DSPECK achieves the 
best lossless performance. In lossy mode, the AT-3DSPECK algorithm outperforms AT-3DSPIHT and 3DSPECK 
at all rates. Besides the high compression performance, AT-3DSPECK supports progressive transmission. Clearly, 
the proposed AT-3DSPECK algorithm is a better candidate than several conventional methods. 
 
Keywords: hyperspectral images,3D image compression, wavelet transform,3DSPECK, zeroblock coding 
 

1. INTRODUCTION 
Hyperspectral images are of interest for a large number of applications, including environmental monitoring, 

geology, and meteorology. This is because hyperspectral imagery provides the potential for more accurate and 
detailed information extraction than possible with any other type of remotely sensed data. However, hyperspectral 
images result in large sized data sets. The storage and transmission of large volumes of hyperspectral data have 
become significant concerns. Therefore efficient compression is required for storage and transmission. 
 

Hyperspectral images include both spatial and spectral redundancies. Most popular image coding algorithms 
attempt to transform the image data so that the transformed coefficients are largely uncorrelated. Then these 
coefficients can be quantized and coded. In many applications, the 3D transform employs the Karhunen-Loeve 
transform (KLT) to decorrelate spectral redundancies while 2D wavelet transform is used to decorrelate spatial 
redundancies[1]. The well-known Karhunen-Loeve transform (KLT) is the optimal linear transformation for 
decorrelating the data. Unfortunately, KLT is too computationally complex, and also KLT can rarely achieve 
lossless compression. 

 
The 3D wavelet transform (3DWT) has a much lower computational complexity than the KLT/WT. Therefore 

many 3D image coding methods based on 3DWT are proposed in [2-7]. The classical 3D wavelet image coding 
algorithm is 3DSPIHT proposed by Kim et al. [2].  It is an extension of original 2DSPIHT[8] and has a 3D tree 
structure. Tang et al. [3] extended 2DSPECK[9] to 3DSPECK for hyperspectral image compression. In [3] the 
transformed coefficients are partitioned into several three-dimensional zeroblocks with different sizes. Initially, 
each wavelet subband is treated as a zeroblock. Next, when the zeroblock is significant against the threshold n , it 
is split into several smaller subblocks. In general, 3DSPECK is very close to 3DSPIHT considering rate-distortion 
performance. However, 3DSPECK has been found to be better performance in hyperspectral images with high 
spatial frequency content and complex texture[3]. 
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Recently a new asymmetric 3DWT method has been proposed. For 3D image data compression, the asymmetric 
3DWT is more efficient than the symmetric 3DWT. The new asymmetric transform method differs from symmetric 
transform mainly in a wavelet packet transform applied spectrally. At-3DSPIHT[5], 3D-ESCOT[6] and optimal 3D 
coefficient tree structure[4] based on the asymmetric 3DWT are presented. They exhibited a better performance than 
conventional algorithms based on symmetric 3DWT.  

 
In this paper, a progressive lossy-to-lossless hyperspectral image compression technique is developed. For most 

remote sensing applications, it is unwise to discard any information that may be useful later, thus the original 
quality of the data must be thoroughly preserved after compression/decompression. In order to obtain progressive 
lossy-to-lossless compression with a single embedded bitstream, we apply asymmetric 3DWT based on integer 
lifting scheme to eliminate much of the redundancy. Finally these transformed coefficients are quantized and 
encoded. Considering the distribution of the coefficients of the subbands, we apply 3DSPECK’s 3D set partitioning 
block algorithm and the 3D octave partitioning scheme to code the transformed coefficients, where 3D octave 
partitioning is a modification and extension of 2DSPECK’s octave partitioning. 

 
The rest of this paper is organized as following: in section 2, after several common reversible integer wavelet 

transforms based on lifting scheme are reviewed, the asymmetric 3DWT and the AT-3DSPECK are described in 
detail. Experiments and results are provided in section 3, in which the performances of AT-3DSPECK, AT-
3DSPIHT, 3DSPECK, JPEG2000, 2DSPECK and 2DSPIHT are compared for hyperspectral image compression. 
Finally, section 4 concludes this paper. 

 
2. THREE-DIMENSIONAL WAVELET TRANSFORM 

2.1. Lifting-based wavelet transform 
Wavelet transforms can be implemented using finite impulse response filter banks. Wim Sweldens[11] introduced 

the lifting scheme allowing to compute the discrete wavelet transform with a reduced computational complexity. 
Any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite 
sequence of simple filtering steps, which we call lifting steps[12], thus any integer wavelet transform can be achieved 
using lifting scheme. The lifting algorithm can be described in three steps: lazy wavelet transform, predication and 
update. Let [ ]x n  be the input signal. Then “the lazy wavelet transform” is given by 

           0[ ] [2 ]s n x n= ,                       (1) 

Table 1. Lossless integer lifting filters for forward transform 
Filter name Lifting Steps 

5x3 
 

 

0 0 0

0

[ ] [ ] 1 2( [ ] [ 1]) 1 2

[ ] [ ] 1 4( [ 1] [ ]) 1 2

d n d n s n s n

s n s n d n d n

= − + + +

= + − + +
 

5x11 

 

 

 

1 0 0 0

0 1 1

1

[ ] [ ] 1 2( [ ] [ 1]) 1 2

[ ] [ ] 1 4( [ 1] [ ]) 1 2

[ ] [ ] 1 16( [ 1] [ ] [ 1] [ 2]) 1 2

d n d n s n s n

s n s n d n d n

d n d n s n s n s n s n

= − + + +

= + − + +

= − − − + + + − + +

 

9x3 
 

 

0 0 0

0

[ ] [ ] 1 2( [ ] [ 1]) 1 2

[ ] [ ] 19 64( [ 1] [ ]) 3 64( [ 2] [ 1]) 1 2

d n d n s n s n

s n s n d n d n d n d n

= − + + +

= + − + − − + + +
 

9x7 
 

 

0 0 0 0 0

0

[ ] [ ] 9 16( [ ] [ 1]) 1 16 ( [ 1] [ 2]) 1 2

[ ] [ ] 1 4( [ 1] [ ]) 1 2

d n d n s n s n s n s n

s n s n d n d n

= − + + − − + + +

= + − + +
 

13x11 
 

 

0 0 0 0 0 00

0

75 128 ( [ ] [ 1]) 25 256 ( [ 1] [ 2]) 3 256 ( [ 2] [ 3]) 1 2[ ] [ ]

[ ] [ ] 1 4( [ 1] [ ]) 1 2

s n s n s n s n s n s nd n d n

s n s n d n d n

+ + − − + + + − + + += −

= + − + +
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0[ ] [2 1]d n x n= + .                                      (2) 
Next, alternating “predication” and “update” steps are applied using 

 1 1[ ] [ ] [ ] [ ] 1/ 2i i i i
k

d n d n p k s n k− −
  = − − +  
  
∑ ,                (3) 

1[ ] [ ] [ ] [ ] 1/ 2i i i i
k

s n s n u k d n k−
  = + − +  
  
∑ ,                (4) 

for 0, , 1i M= −� . Finally, scaling factors are applied to get the wavelet coefficients: 

[ ] [ ]Ms n s n k= ,                                      (5) 

[ ] [ ]Md n kd n= ,                                      (6) 

where [ ]s n  and [ ]d n  are, respectively, the low-pass and the high-pass wavelet coefficients and 1k =  is the 
corresponding scaling factors in our work. Table 1 shows several integer filters. 

2.2. Three-Dimensional integer Wavelet Transform 
A commonly used 3DWT is the symmetric 3DWT which has been used in 3DSPIHT[2] and 3DSPECK[3]. It is 

performed by three separate 1D dyadic wavelet transforms along the spectral directions, the rows and the columns 
of the image data. However, many experiments show that 3D hyperspectral images (or 3D video sequences) do not 
have symmetric statistical properties along all the directions[4], [5]. The average standard deviation of the spectral 
dimension is much smaller than the average standard deviations of other two spatial dimensions. The asymmetric 
transform just solves these asymmetric statistics, and can efficiently reduce the redundancy between spectral bands. 
The 3D asymmetric wavelet transform has been applied in [4-7] for 3D image compression. Fig.1 illustrates a 3D 
asymmetric wavelet structure which has three levels of decomposition. Three levels of dyadic wavelet 
decomposition are applied in the spatial domain, followed by three levels of wavelet decomposition on the spectral 
domain.  

 
Usually, the non-unitary transform does not affect the performance of lossless compression. However, this will 

decrease the performance of lossy compression. If the transform is unitary, the distortion in the transform domain 
can be directly related to the distortion in the pixel domain. Thus, when the non-unitary transform is employed, 
appropriate scaling of the subband coefficients is necessary to correct the mismatch of distortion estimation 
between the pixel domain and transform domain. In our study, we follow a simple bit shifting of wavelet 
coefficients proposed by Xiong[6] to make the transform unitary. Fig.2 gives a 3-level asymmetric wavelet transform 
structure with the subband scaling. Although [6] applies wavelet packet technology on the spectral dimension to 
approximate a unitary transformation and to improve the performance of 3D image compression, but our 
experiments show that the applied wavelet packet on the high-frequency subbands of spectral dimension of the 

 
Fig. 1.  Asymmetric 3DWT structure 
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hyperspectral images will decrease the performance for lossy compression. In [6], right shift will cause the loss of 
the precision on the highest-frequency subband. In our case, all coefficients on the highest-frequency subband will 
be not shifted.  

2.3.  Asymmetric Transform 3D Set Partitioning Embedded block (AT-3DSPECK) 
In the zerotree algorithm[8], once zerotree tested significant, it is partitioned into several sub-zerotrees. If the 

zerotree is not significant, outputs “0” to indicate this zerotree. The AT-3DSPECK is different from the 3D zerotree 
algorithm mainly in its treatment of the zeroblock (a large region of insignificant coefficients). If all of coefficients 
are not significant in a block, the block is a zeroblock[10]. Whenever a given set in 2DSPECK[9] tests significant 
against the threshold n  for 2D image, it is partitioned into four approximately equal subsets. 3DSPECK is a 
modification of 2DSPECK, where each set tested significant is partitioned into eight/four approximately equal 
subsets for 3D images. As in traditional 3DSPECK approaches, l  levels of dyadic wavelet decomposition are 
applied along all directions, the transformed images will have 7 1l +  3D subbands. When the 3DSPECK algorithm 
starts, each 3D subband is defined as a zeroblock and is added to the LIS – List of Insignificant Sets. We treat each 
of these subsets as type S  set, and test their significance. If any set of type S  is significant, this set is partitioned 
into eight/four subsets with a smaller size. As we see, in asymmetric way, 2D dyadic wavelet decomposition in the 
spatial domain and 1D cascaded wavelet packet decomposition on the spectral domain form more 3D subbands. 
After asymmetric 3D wavelet decomposition, there are (3 1)( 1)l z+ +  3D subbands, and l  is the number of 
decomposition levels in the spatial domain and z  is the number of decomposition levels on the spectral domain. 
Our experiments show that the original 3DSPECK applied to code the coefficients after the asymmetric wavelet 
transform is not the best for hyperspectral images. Obviously, many transform coefficients are zero or low 
amplitude in the high frequency subbands (finer subbands) where the probability of finding significant coefficients 
against a big threshold (the high bit plane) is very little. When the 3DSPECK algorithm starts, several finer 
subbands which have low energy are treated as insignificant sets in LIS, and they will repeatedly output “0” against 
the first several bit planes. That means the more level of wavelet decomposition and insignificant set in the LIS, the 
more “0” bit will be generated against the first several bit planes. An important problem is how to reduce the output 
produced by these obviously insignificant finer subbands. We consider that whenever possible, these finer subbands 
should be indicated to use few sets.  
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Fig. 2.  The subband scaling parameters used in Asymmetric 3DWT structure 

  

 
Fig. 3.  Partitioning of set I in the spatial domain 
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In the 2DSPECK algorithm, the octave band partitioning is proposed. Fig. 3 gives an illustration of this 

partitioning scheme in the spatial domain. Because energy is concentrated at the topmost levels of wavelet 
decomposition, the transformed image is partitioned into several sets of type S  and one set of type I . If a set of 
I  is significant against some threshold n , it is more likely that the pixels which cause I  to be significant lie in 
the top left regions of I

[9], as is shown in Fig. 3. These regions are decomposed into three sets of type S  and one 
set of type I . The main goal of the octave band partitioning is to use one set of type I  to represent these finer 
subbands which have a little probability of insignificant. 
 

We extend the octave band partitioning of 2DSPECK to 3D version in our 3D applications. As is illustrated in 
Fig.4, at the beginning, the transformed image is partitioned into two 3D sets – one set of type S  and one set of 
type I . They are added to the LIS and tested against the threshold n . If set S  is significant, it will be partitioned 
into eight/four approximately equal subsets with a smaller size and outputs bit “1”. If set I  is significant, it is 
partitioned into three new sets of type S  and one/two new set of type I , and also outputs bit “1”. If set S  or I  
is insignificant, it stays in the LIS and outputs “0”. In Fig.5, t , h  and v  represent the length of three sides of set 
S  respectively. ( , , )P k i j  denotes the coefficient which is the closest to (0,0,0)  position in set S . So set S  can 
be expressed as [( , , ) , , ]S k i j t h v . After set S  is partitioned, the length of three sides of these subsets is defined as 
 

' /t t=   2 , '' /t t t= −   2 , 

          ' /h h=   2 , '' /h h h= −   2 ,                                  (7) 

' /v v=   2 , '' /v v v= −   2  

 

  
             (a)         (b) 

    
                        (c)                            (d) 

Fig. 4.  Illustration of 3D octave band partitioning of AT-3DSPECK 
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where each subset is treated as a new set of type S  and tested recursively. We use ( , , )k i jI to represent the 
position of set I , as is showed in Fig.6. For example, 0I  is represented as (0, , )R CI in Fig.4 (a), 1I  is represented 
as ( , 0, 0)I B  in Fig. 4 (b), and 1I  is represented as ( , 2 , 2 )I B R C  in Fig. 4 (d). The simple partitioning procedure for 
set I and set S  is summarized as the following: 
 

( , , )k i jI  : set I  at band k , row i and column j . 
[( , , ) , , ]S k i j t h v : set of type S  at band k , row i and column j ; t , h  and v  represent the length of three sides 

of set S  respectively. 
B  : total bands of the lowest subband. 
R  : total rows of the lowest subband. 
C  : total columns of the lowest subband. 

( )O x  : set x  is partitioned into several smaller subsets.  
if (set ( , , )k i jI  is significant) 
{ 

if ( k =0 and i = R  and j = C ) 

( )
[(0, 0, ) , , ] [(0, , 0) , , ]

[(0, , ) , , ], (0, 2 , 2 ), ( , 0, 0)

, ,
O I

C B R C R B R C

R C B R C I R C I Bs

s s
=
 
 
 

 

elseif ( i =0 and j =0) 

{ }( ) [( , 0, 0) , , ] ( , , ), (2 , 0, 0),O I k k R C I k R C I ks=  
else 

[( , 0, ) , , ]
( )

[( , , 0) , , ]

[( , , ) , , ] ( , 2 , 2 )

, ,

,

k j B i j
O I

k B j

k j B j I k i j

s s i i

s i i
=
 
 
 

 

} 
if (set [( , , ) , , ]S k i j t h v  is significant) 

     

       

       

         

       

         

   

[( , , ) / 2 / 2 / 2 ]

[( , , / 2 ) / 2 / 2 / 2 ]

[( , / 2 , ) / 2 / 2 / 2 ]

[( , / 2 , / 2 ) / 2 / 2 / 2 ]
( )

[( / 2 , , ) / 2 / 2 / 2 ]

[( / 2 , , / 2 ) / 2 / 2 / 2 ]

[( / 2 , / 2 , ) /

, ,

, ,

, ,

, ,

, ,

, ,

,

,

,

,

,

,

k i j t h v

k i j v t h v

k i h j t h v

k i h j v t h v
O

k t i j t t h v

k t i j v t t h v

k t i h j t t

v

h

h v
S

v

s

s

s

s

s

s

s

+

+

+ +
=

+ −

+ + −

+ + −

−

−

− −

−

     

           

2 / 2 / 2 ]

[( / 2 , / 2 , / 2 ) / 2 / 2 / 2 ]

, ,

, ,

,h v

k t i h j v t t h v

h

h vs + + + −

−

− −

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The minimum size of type S  is a 1 1 1× ×  block. That means the 1 1 1× × set of type S  only indicates one 

coefficient. So if the length of any side of set is 0, it will be defined as empty and not processed. As we can see, in 
AT-3DSPECK, a set of type S  can be partitioned into x  subsets. If a set S  is significant and its first 1x −  
subsets are insignificant, the x th subset must be significant, and we do not have to send the significance test result 
of the last subset[9]. Our experiments show that this step can significantly improve the coding performance. 

 
To optimize the rate-distortion performance of the embedded bit stream, during the sorting pass, an important 

step is that sets should be tested in the increasing order of size[3], [9]. The reason is that if some coefficients are 
significant, their neighboring coefficients in the same energy cluster have close magnitudes. So it is likely that those 
not found to be significant in the current pass will be significant against some nearby lower threshold. However, 
any sorting algorithm will increase the coding time and the encoder/decoder would become very slow[3], [9]. Our 
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experiments show that if we did sorting procedure, we would not tolerate the coding time for hyperspectral images 
with high resolution at high bit rates. To avoid the sorting procedure, all one need to do is to search the LIS several 
times against the different partitioning depth.  
 

Assume that the hyperspectral images consist of T  bands, where each band consists of H V× pixels in the 
spatial domain. The 3D set with T H V× × pixels has the minimum partitioning depth 0. Let d  be the partitioning 
depth of any set of type S . The lengths of three sides of set of type S  are: t , h  and v . To describe the 
partitioning depth simply, we consider that these sets with the same h v×  have the same partitioning depth. Then 
the partitioning depth of any set is given by 2log / )(H hd =  or 2log / )(V vd = . When a set with the depth d  is 

partitioned, the partitioning depth of its subsets is 1d + . Clearly, the size of set of type S  in LIS is in inverse 
proportion to its partitioning depth.  In each bit plane, all we need to do is to search the LIS several times against 
the different partition depth from the maximum depth to the minimum depth. The simple partitioning procedure for 
set I  and set S  is summarized as the following: 

maxD , minD : the maximum partitioning depth and the minimum partitioning depth among all sets. 
( )d S : the partition depth of set S . 

( )O S : set S  is partitioned into several smaller subsets. 

for l = maxD : minD  
for each set S  in LIS, do 

if ( )d S = l  do ( )O S , else skip 
 

The above partitioning procedure and sorting rule satisfy the condition where the width is not equal to the height 
in the spatial domain for 3D images. If we skip the sorting rule, the computational time will decrease 
proportionally. But at the same time it is likely that the lossy compression performance will decrease proportionally. 

 
3. NUMERICAL RESULTS 

We use two hyperspectral images “Jasper1” and “Moffett1” to evaluate the compression performance. All test 
images are typical AVIRIS images and are provided by NASA. There are 224 spectral bands, each consisting of 
614 lines of 512 pixels quantized at 12 bit per pixel per band (bpppb). For our experiments, a cube set of 
size 512 512 224× × is selected and used as the test set. Fig.7 (a) shows band 188 of the “Jasper1” images, and Fig.7 
(b) shows band 120 of the “Moffett1” images. 
 

The performance improves with the coding unit size in general, but the gain is smaller and smaller as the coding 
unit size increase[1], [4], [6]. So the test images are coded with the unit size of 16 bands in our implementation. We use 
four-level wavelet transforms with the 5/3, 5/11, 9/3, 9/7, 13/11[6] and 9/7-F[13] tap biorthogonal filters along all the 
directions. The implementation of the AT-3DSPIHT follows the algorithm presented in [5]. All algorithms apply 
the arithmetic coding to further improve the coding performance. 

         

(0,0,0)

( , , )G k i j
I

 
Fig. 5.  Partitioning of set S      Fig. 6.  Illustrate of set I  

490     Proc. of SPIE Vol. 5637



 
3.1.  Lossless compression 

Table 2 gives the average lossless compression results (bpppb) with the subband scaling for the test images. In 
addition, different filters perform differently for the test images. The results show that AT-3DSPECK is better coder 
than AT-3DSPIHT. We notice that especially the 5/3 filter are performing well, closely followed by the 9/3 filter.  
 

The results in Table 3 are the lossless compression bitrate using the 5/3 filter without the subband scaling. 
Clearly, these results are better than that in Table 2. This is because the subband scaling by bit shifts causes a bit 

   
 (a)       (b) 

Fig. 7.  Band 188 of the (a) “Jasper1” and band 120 of (b) “Moffett1” used in the experiments 
  

Table 2. Lossless compression comparisons using different filters with the subband scaling 
 Jasper1 Moffett1 
bpppb AT-3DSPIHT AT-3DSPECK AT-3DSPIHT AT-3DSPECK 

5/3 7.30 7.22 7.40 7.31 
5/11 7.52 7.42 7.63 7.53 
9/3 7.32 7.23 7.40 7.32 
9/7 7.48 7.38 7.59 7.49 

13/11 7.55 7.45 7.66 7.57 
Average 7.43 7.34 7.54 7.44 

 

Table 4. SNR (dB) performance comparisons using the 5/3 integer filter with the subband scaling and 9/7 
floating-point filter for lossy coding 

 Jasper1 Moffett1 
bpppb 0.2 0.5 1 2 4 0.2 0.5 1 2 4 

3DSPECK(5/3) 19.03 23.26 28.68 37.10 48.07 22.15 26.34 31.96 40.55 51.24 
AT-3DSPIHT(5/3) 24.59 32.33 36.60 41.38 46.60 27.19 35.08 39.57 43.36 49.90 
AT-3DSPECK(5/3) 25.62 32.42 37.32 42.20 50.54 28.51 35.89 40.46 44.93 53.55 

3DSPECK(9/7F) 19.28 23.41 28.73 37.05 48.20 22.40 26.49 31.97 40.44 51.38 
AT-3DSPIHT(9/7F) 26.03 33.09 37.30 41.51 47.18 28.77 35.80 39.96 44.07 50.19 
AT-3DSPECK(9/7F) 26.40 33.14 37.87 43.17 53.16 29.41 36.52 40.92 45.92 56.25 
 

Table 3. Lossless compression comparisons using the 5/3 filter without the subband scaling 
bpppb 3DSPECK AT-3DSPIHT AT-3DSPECK 2DSPIHT 2DSPECK JPEG2000 

Jasper1 7.35 6.87 6.71 8.72 8.65 8.83 
Moffett1 7.44 6.96 6.79 8.77 8.71 8.89 
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growth and hence a data expansion, inefficient for lossless compression. On the other hand, as mentioned earlier, 
the subband scaling ensures higher compression ratios for lossy coding. To gain higher lossy compression ratios, 
these codecs are equipped with the subband scaling. Compared to the 2DSPECK, 2DSPIHT and JPEG2000, 
obviously, the 3D versions (3DSPECK, AT-3DSPIHT and AT-3DSPECK) guarantee at lest 16% improvement for 
lossless compression. 
  
3.2.  Lossy compression 

Since the codec is embedded in our applications, lossy coding results can be generated easily from decoding the 
same encoded bitstream with different target bit rates. The various bit rates and corresponding reconstruction 
Signal-to-Noise Ratio (SNR) for coding the test images “Jasper1” and “Moffett1” over a wide bit rate range using 
AT-3DSPECK, 3DSPECK[3] and AT-3DSPIHT[5] are shown in Table 4, where SNR is averaged over all bands. We 
see that AT-3DSPECK outperforms 3DSPECK and AT-3DSPIHT at all rates once again. AT-3DSPECK is 1.6dB 
better than AT-3DSPIHT on average. AT-3DSPIHT achieves higher SNR than 3DSPECK at very low and middle 
bit rate, but at high rates 3DSPECK performs slightly better than AT-3SPIHT. We notice that 9/7 floating-point 
wavelet for lossy compression provides slightly better compression ratios than integer wavelet. Although the lossy 
performance using integer wavelet is not quite as good as that for floating-point wavelet, integer wavelets are less 
complex and offer excellent performance for lossless image compression applications. 

 
4. CONCLUSION 

In this paper, a modified 3DSPECK algorithm (AT-3DSPECK) based on 3D integer wavelet packet transforms 
has been proposed for lossy to lossless compression of hyperspectral images. The two powerful techniques: the 
asymmetric 3D wavelet transform and 3D set partitioning block algorithm are efficiently combined in the proposed 
algorithm. The asymmetric 3D wavelet transform can efficiently reduce the correlation along the spatial and 
spectral dimensions and concentrate much more energy into a single band. To gain good lossy compression 
performance, our method use a 3D integer wavelet packet transforms with the subband scaling to approximate a 3D 
unitary transforms. When comparing the AT-3DSPECK to other three-dimensional coder like AT-3DSPIHTand 
3DSPECK, AT-3DSPECK gave good results at any bit rate, especially at the higher bit rates. For lossless coding, 
which is a very important feature in hyperspectral image compression, AT-3DSPECK is outperforming the other 
coders. Thus, the proposed AT-3DSPECK algorithm is a better candidate than AT-3DSPIHT and several others 
methods based on 3D wavelet transform for hyperspectral image compression. Moreover, AT-3DSPECK can be 
applied in compression of medical volumetric data. In our future work, we plan to pay increased attention to the 
video coding part, using 3D wavelet transform and motion compensation.  
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