

BIONANOTECHNOLOGY

lessons from nature

DAVID S. GOODSELL

CONTENTS

1	The Quest for Nanotechnology	1
	Biotechnology and the Two-Week Revolution	3
	From Biotechnology to Bionanotechnology	4
	What is Bionanotechnology?	6
2	Bionanomachines in Action	9
	The Unfamiliar World of Bionanomachines	10
	Gravity and inertia are negligible at the nanoscale	10
	Nanomachines show atomic granularity	11
	Thermal motion is a significant force at the nanoscale	12
	Bionanomachines require a water environment	13
	Modern Biomaterials	14
	Most natural bionanomachines are composed of protein	15
	Nucleic acids carry information	21
	Lipids are used for infrastructure	24
	Polysaccharides are used in specialized structural roles	27
	The Legacy of Evolution	28
	Evolution has placed significant limitations on the properties of natural biomolecules	31
	Guided Tour of Natural Bionanomachinery	32
3	Biomolecular Design and Biotechnology	43
	Recombinant DNA Technology	45
	DNA may be engineered with commercially available enzymes	46
	Site-directed mutagenesis makes specific changes in the genome	52
	Fusion proteins combine two functions	52

232

	Regulation	167
	Protein activity may be regulated through allosteric motions	167
	Protein action may be regulated by covalent modification	171
	Biomaterials	173
	Helical assembly of subunits forms filaments and fibrils	174
	Microscale infrastructure is built from fibrous components	177
	Minerals are combined with biomaterials for special applications	181
	Elastic proteins use disordered chains	184
	Cells make specific and general adhesives	187
	Biomolecular Motors	189
	ATP powers linear motors	190
	ATP synthase and flagellar motors are rotary motors	194
	Brownian ratchets rectify random thermal motions	201
	Traffic Across Membranes	203
	Potassium channels use a selectivity filter	205
	ABC transporters use a flip-flop mechanism	207
	Bacteriorhodopsin uses light to pump protons	207
	Biomolecular Sensing	211
	Smell and taste detect specific molecules	212
	Light is sensed by monitoring light-sensitive motions in retinal	213
	Mechanosensory receptors sense motion across a membrane	213
	Bacteria sense chemical gradients by rectification of random motion	216
		217
	Self-Replication	216
	Cells are autonomous self-replicators	217
	The basic design of cells is shaped by the processes of evolution	220
	Machine-Phase Bionanotechnology Muscle sarcomeres	221
		221
	Nerves	224
6	Bionanotechnology Today	227
	Basic Capabilities	228
	Natural proteins may be simplified	228
	Proteins are being designed from scratch	230

Proteins may be constructed with nonnatural amino acids

Peptide nucleic acids provide a stable alternative to DNA and RNA	235
Nanomedicine Today	237
Computer-aided drug design has produced effective	238
anti-AIDS drugs	
Immunotoxins are targeted cell killers	240
Drugs may be delivered with liposomes	241
Artificial blood saves lives	243
Gene therapy will correct genetic defects	245
General medicine is changing into personalized medicine	247
Self-Assembly at Many Scales	248
Self-assembling DNA scaffolds have been constructed	248
Cyclic peptides form nanotubes	250
Fusion proteins self-assemble into extended structures	252
Small organic molecules self-assemble into large structures	252
Larger objects may be self-assembled	254
Harnessing Molecular Motors	257
ATP synthase is used as a rotary motor	257
Molecular machines have been built of DNA	259
DNA Computers	261
The first DNA computer solved a traveling salesman problem	262
Satisfiability problems are solved by DNA computing	264
A Turing machine has been built with DNA	265
Molecular Design Using Biological Selection	266
Antibodies may be turned into enzymes	267
Peptides may be screened with bacteriophage display libraries	271
Nucleic acids with novel functions may be selected	273
Functional bionanomachines are surprisingly common	277
Artificial Life	277
Artificial protocells reproduce by budding	278
Self-replicating molecules are an elusive goal	280
ATP is made with an artificial photosynthetic liposome	281
Poliovirus has been created with only a genetic blueprint	283
Hybrid Materials	285
Nanoscale conductive metal wires may be constructed	285
with DNA	

323

Patterned aggregates of gold nanoparticles are formed	286
with DNA	
DNA flexes a sensitive mechanical lever	287
Researchers are harnessing biomineralization	288
Biosensors	290
Antibodies are widely used as biosensors	293
Biosensors detect glucose levels for management of diabetes	292
Engineered nanopores detect specific DNA sequences	294
7 The Future of Bionanotechnology	29
A Timetable for Bionanotechnology	296
Lessons for Molecular Nanotechnology	298
Three Case Studies	300
Case study: Nanotube synthase	30
Case study: A general nanoscale assembler	300
Case study: Nanosurveillance	305
Ethical Considerations	309
Respect for life	309
Potential dangers	31
Final thoughts	31
Literature	31
Sources	

Index