FISHERIES ECOLOGY AND MANAGEMENT

Carl J. Walters and Steven J. D. Martell

CONTENTS

LIST C	F FIGURES	xi
LIST O	OF TABLES	xvii
PREFA	CE :	xix
ACKNOWLEDGMENTS		
	ONE: CHANGING OBJECTIVES	
AND	EMERGING ASSESSMENT METHODS	1
СНАРТ		
Introd	luction	3
1.1	The Role of Predictive Models	3
1.2	The Distinction between Fish Science and Fisheries Science	5
1.3	Approaches to Prediction of Policy Impact	6
1.4	1	9
1.5	The Ecological Basis of Sustainable Harvesting	12
CHAPT	TER 2	
Trade	-Offs in Fisheries Management	20
2.1	Trade-Off Relationships and Policy Choices	22
2,2	Short-Term versus Long-Term Values	25
2.3	Biological Diversity versus Productivity	31
2.4	Economic Efficiency versus Diversity of Employment Opportunities	37
2.5	Allocation of Management-Agency Resources	39
PART	TWO: ELEMENTARY CONCEPTS IN POPULATION	
	AMICS AND HARVEST REGULATION	41
CHAPT Strate	gic Requirements for Sustainable Fisheries	43
3.1	Harvest Optimization Models	
3.2	Constructing Feedback Policies	46 49
3.3	Feedback Policy Implementation	58
3.4	Feedback Policies for Incremental Quota Change	61
3.5	Actively Adaptive Policies	63
	• •	00
CHAPT		
	s for Effective Harvest Regulation	65
4.1	Tactical Options for Limiting Exploitation Rates	67
4.2	Managing the Risk of Depensatory Effects under Output Control	69
4.3	Tactics for Direct Control of Exploitation Rates	74
4.4	Regulation of Exploitation Rates in Recreational Fisheries	77
4.5	In-Season Adaptive Management Systems	79

viii		CONTENTS
ATTE	·	

4.6 4.7	Monitoring Options and Priorities Maintaining Genetic Diversity and Structure in Harvested Populations	80 83	
4./	Maintaining Generic Diversity and Structure in Harvested Fopulations	03	
	THREE: USE AND ABUSE OF SINGLE-SPECIES SSMENT MODELS	87	
СНАРТ	*ER 5		
An Overview of Single-Species Assessment Models			
5.1	Objectives of Single-Species Assessment	89	
5.2	State-Observation Components	91	
5.3	Estimation Criteria and Measuring Uncertainty	95	
5.4	Modeling Options	101	
5.5	Using Composition Information	110	
5.6	Dealing with Parameters That Aren't	121	
CHAPT			
Forag	ing Arena Theory (I)	124	
6.1	Beverton-Holt Model for Stock-Recruitment	128	
6.2	Alternative Models Based on Juvenile Carrying Capacity	132	
6.3	Using Foraging Arena Arguments to Derive the Beverton-Holt Model	136	
6.4	Implications for Recruitment Research and Prediction	147	
CHAP	ΓER 7		
Proble	ems in the Assessment of Recruitment Relationships	151	
7.1	Which Parameters Matter?	152	
7.2	Predicting Reproductive Performance at Low Stock Sizes	158	
7.3	Predicting Capacity to Recover from Historical Overfishing	160	
7.4	The Errors-in-Variables Bias Problem	162	
7.5	The Time-Series Bias Problem	165	
7.6	Can Statistical Fisheries Oceanography Save the Day?	173	
DAD'I	FOUR; MODELING SPATIAL PATTERNS		
	DYNAMICS IN FISHERIES	179	
MND	D INAMICS IN TISHERES	1//	
CHAP		101	
Spatia	al Population Dynamics Models	181	
8.1	Life-History Trajectories	182	
8.2	Multistage Models	185	
8.3	Eulerian Representation	188	
8.4	Lagrangian Representation	193	
8.5	Policy Gaming with Spatial Models	198	
CHAP			
Temp	ooral and Spatial Dynamics of Fishing Effort	200	
9.1	Long-Term Capacity	201	
9.2	Short-Term Effort Responses	204	

CONTENTS		
9.3	Spatial Allocation of Fishing Effort	210
9.4	Mosaic Closures	223
рарт	FIVE: FOOD WEB MODELING TO HELP ASSESS	
	CT OF FISHERIES ON ECOLOGICAL SUPPORT	
	TIONS	229
10		رسد
CHAPT	ER 10	
Foragi	ng Arena Theory (II)	231
10.1	Understanding Foraging Arena Theory	232
10.2	Predicting Trophic Flows	236
10.3	Adding Realism (I): Foraging Time Adjustments	240
10.4	Adding Realism (II): Trophic Mediation	244
10.5	Ecosim	246
10.6	Representing Trophic Ontogeny in Ecosim	248
10.7	Single-Species Dynamics from Ecosim Rate Equations	252
10.8	Ecosystem-Scale Variation	254
CHAPT	701 22	
Option	as for Ecosystem Modeling	256
11.1	Qualitative Analysis of Dominant Trophic Interactions	259
11.2	Qualitative Analysis of More Complex Linkages	270
11.3	Models That Link Dynamics with Nutrient Cycling Processes	271
11.4	Representation of Mesoscale Spatial-Policy Options	276
11.5	Individual-Based Size- and Space-Structured Models	283
CHAPT		•
Param	eterization of Ecosystem Models	286
12.1	Parameterizing Models	287
12.2	Parameter Estimates from Experimental Data	289
12.3	Estimating Parameters from Mass Balance Snapshots	292
12.4	Challenging Ecosystem Models with Data	300
PART	SIX: STRATEGIES FOR ECOSYSTEM MANAGEMENT	311
CHAPT	ER 13	
	Enhancement Programs	313
13.1	Things That Can Go Wrong	317
13.2	Critical Steps in Enhancement Program Design	326
13.3	Monitoring and Experimental Requirements	331
CHAPT	ER 14	
Option	s for Sustainable Ecosystem Management	334
14.1	Alternative Visions of Ecosystem Structure	335
14.2	Moving Toward Sustainable Ecosystem Management	344

BIBLIOGRAPHY

355

INDEX 381