

The Design of Modern Microwave Oscillators for Wireless Applications

Theory and Optimization

Ulrich L. Rohde, Ajay K. Poddar, and Georg Böck

CONTENTS

For	Foreword			
Preface Biographies				
	1.1	Organization	5	
2	General Comments on Oscillators		9	
	2.1	Sinusoidal Oscillators	10	
	2.2	Phase Noise Effects	11	
	2.3	Specifications of Oscillators and VCOs	13	
	2.4	History of Microwave Oscillators	17	
	2.5	Three Approaches to Designing		
		Microwave Oscillators	18	
	2.6	Colpitts Oscillator, Grounded Base Oscillator,		
		and Meissen Oscillator	21	
	2.7	Three-Reactance Oscillators Using Y-Parameters:		
		An Introduction	28	
	2.8	Voltage-Controlled Oscillators (VCOs)	32	
3	Transistor Models		37	
	3.1	Introduction	37	
	3.2	Bipolar Transistors	40	
	3.3	Field-Effect Transistors (FETs)	47	
	3.4	Tuning Diodes	56	
4	Large-Signal S-Parameters			
	4.1	Definition	61	
	4.2	Large-Signal S-Parameter Measurements	63	
5	Reso	onator Choices	71	
	5.1	LC Resonators	71	

vi CONTENTS

	5.2 5.3	Microstrip Resonators Ceramic Resonators	72 79
	5.4	Dielectric Resonators	81
	5.5	YIG-Based Resonators	83
6	General Theory of Oscillators		
	6.1	Oscillator Equations	87
	6.2	Large-Signal Oscillator Design	94
7	Noise in Oscillators		
	7.1	Linear Approach to the Calculation of	
		Oscillator Phase Noise	123
	7.2	The Lee and Hajimiri Noise Model	137
	7.3	Nonlinear Approach to the Calculation of	
		Oscillator Phase Noise	139
	7.4	Phase Noise Measurements	148
	7.5	Support Circuits	153
8	♣		
	Nois	e in Oscillators	159
	8.1	Introduction	159
	8.2	Oscillator Configurations	159
	8.3	Oscillator Phase Noise Model for the Synthesis Procedure	159
	8.4	Phase Noise Analysis Based on the Negative	
		Resistance Model	162
	8.5	Phase Noise Analysis Based on the Feedback Model	185
	8.6	2400 MHz MOSFET-Based Push-Pull Oscillator	199
	8.7	Phase Noise, Biasing, and Temperature Effects	210
9	Valid	lation Circuits	233
	9.1	1000 MHz CRO	233
	9.2	4100 MHz Oscillator with Transmission	
		Line Resonators	237
	9.3	2000 MHz GaAs FET-Based Oscillator	241
	9.4	77 GHz SiGe Oscillator	242
	9.5	900-1800 MHz Half-Butterfly	
		Resonator-Based Oscillator	245
10	Systems of Coupled Oscillators		247
	10.1	Mutually Coupled Oscillators Using the Classical	
		Pendulum Analogy	247
	10.2	Phase Condition for Mutually Locked (Synchronized)	,
		Counled Oscillators	254

		CONTENTS	vii
	10.3	Dynamics of Coupled Oscillators	257
	10.4	Dynamics of N-Coupled (Synchronized) Oscillators	263
	10.5	Oscillator Noise	266
	10.6	Noise Analysis of the Uncoupled Oscillator	271
	10.7	Noise Analysis of Mutually Coupled (Synchronized) Oscillators	276
	10.8	Noise Analysis of N-Coupled (Synchronized) Oscillators	282
	10.9	N-Push Coupled Mode (Synchronized) Oscillators	300
	10.10	Ultra-Low-Noise Wideband Oscillators	315
11	Valid	lation Circuits for Wideband Coupled Resonator VCOs	341
	11.1	300-1100 MHz Coupled Resonator Oscillator	341
	11.2	1000-2000/2000-4000 MHz Push-Push Oscillator	346
	11.3	1500-3000/3000-6000 MHz Dual Coupled	
		Resonator Oscillator	355
	11.4	1000-2000/2000-4000 MHz Hybrid Tuned VCO	361
Re	erence	es	367
Аp	pendix	A Design of an Oscillator Using Large-Signal S-Parameters	381
Аp	pendix	B Example of a Large-Signal Design Based on Bessel Functions	389
Аp	pendix	C Design Example of Best Phase Noise and Good Output Power	397
Аp	pendix	D A Complete Analytical Approach for Designing Efficient Microwave FET and Bipolar Oscillators	407
Аp	pendix	E CAD Solution for Calculating Phase Noise in Oscillators	437
Аp	pendix	F General Noise Presentation	457
Аp	pendix	G Calculation of Noise Properties of Bipolar Transistors and FETs	471
Аp	pendix	H Noise Analysis of the N-Coupled Oscillator Coupled Through Different Coupling Topologies	509
Inc	lex		517

We believe that the abbreviations used in this book are common knowledge for the intended audience, and therefore require no explanation.