



Fundamental
Structural
Analysis
for Design





Brett Lemass and Anne Gardner

## **Table of Contents**

| Cha | Chapter                                                  |    |  |
|-----|----------------------------------------------------------|----|--|
| 1   | DESIGN and ANALYSIS FUNDAMENTALS                         | 1  |  |
| 1.1 | I The Design and Analysis Paradox                        | 1  |  |
| 1.2 | 2 The Design Scenario - An Overview                      | 2  |  |
| 1.3 | B The Design Process                                     | 3  |  |
|     | 1.3.1 A Synthesised Design Process Model                 | 4  |  |
| 1.4 | Design Process Components                                | 5  |  |
|     | 1.4.1 Conceptual Design                                  | 5  |  |
|     | 1.4.2 Detailed Design                                    | 6  |  |
| 1.5 | 5 Fundamental Load Concepts                              | 7  |  |
|     | 1.5.1 Bateman's Bay Bridge Loading Data                  | 7  |  |
|     | 1.5.2 Loads (forces)                                     | 7  |  |
|     | 1.5.3 Load Types                                         | 9  |  |
|     | 1.5.4 Types of Structural Action and Deformation         | 13 |  |
|     | 1.5.5 Load Paths                                         | 14 |  |
| 2   | STATIC EQUILIBRIUM FOR DESIGN                            | 16 |  |
| 2.1 | Static Equilibrium                                       | 16 |  |
| 2.2 | ? Translational Equilibrium in 2-D                       | 16 |  |
|     | Example 1: 2-D Translational Equilibrium Problem Solving | 19 |  |
| 2.3 | Translational Equilibrium in 3-D                         | 20 |  |
| 2.4 | Rotational Equilibrium                                   | 21 |  |
|     | 2.4.1 External and Internal Moments                      | 23 |  |
| 2.5 | Force Couple Moments                                     | 24 |  |
|     | Example 2: Equating Moments for Problem Solving          | 25 |  |
| 2.6 | Structural Supports                                      | 27 |  |
| 2.7 | Determinate And Indeterminate Structures                 | 29 |  |
|     | Example 3: Problem Solving for 2-D Reactions             | 30 |  |
| 2.8 | Internal Pins                                            | 34 |  |
|     | Discussion Exercises                                     | 35 |  |

| 3   | MEMBER DESIGN FOR AXIAL LOADS                                            | 37 |
|-----|--------------------------------------------------------------------------|----|
| 3.1 | Trusses                                                                  | 37 |
| 3.2 | Truss Stability and Determinancy                                         | 39 |
| 3.3 | Analysis Of Trusses                                                      | 41 |
|     | 3.3.1 The Method Of Joints                                               | 41 |
|     | Example 4: Bateman's Bay Bridge Method of Joints Analysis                | 42 |
|     | 3.3.2 The Method Of Sections                                             | 47 |
|     | Example 5: Bateman's Bay Bridge Method of Sections Analysis              | 47 |
| 3.4 | Stress, Buckling and Deflection                                          | 49 |
|     | 3.4.1 Stress                                                             | 49 |
|     | Example 6: Bateman's Bay Bridge Tension Member Design                    | 50 |
|     | 3.4.2 Strain                                                             | 51 |
|     | 3.4.3 Relating Stress And Strain - Hooke's Law                           | 52 |
|     | 3.4.4 Deflection Of Struts And Ties                                      | 53 |
|     | Example 7: Bateman's Bay Bridge Tension Member Deflection                | 53 |
|     | 3.4.5 The Buckling Strength Of Compression Members                       | 54 |
|     | Example 8: Bateman's Bay Bridge Compression Member Design                | 55 |
| 4   | MEMBER DESIGN FOR SHEAR AND BENDING                                      | 58 |
| 4.1 | Load Paths In Beams                                                      | 58 |
| 4.2 | Shear Force And Bending Moment Sign Conventions                          | 59 |
| 4.3 | How To Draw Shear Force Diagrams                                         | 60 |
|     | Example 9: SFD for Bateman's Bay Bridge Cross Girder Point Loads         | 61 |
| 4.4 | How To Draw Bending Moment Diagrams                                      | 62 |
|     | Example 10: BMD for Bateman's Bay Bridge Cross Girder Point Loads        | 62 |
| 4.5 | Relating Load, Shear Force And Bending Moment                            | 64 |
|     | Example 11: Complete SFD and BMD for Bateman's Bay Bridge Cross Girder   | 65 |
| 4.6 | Bending Stress                                                           | 67 |
|     | 4.6.1 Beam Bending                                                       | 67 |
| 4.7 | Beam Bending Stress                                                      | 71 |
|     | Example 12: Conceptual Design of Bateman's Bay Bridge Stringers and      |    |
|     | Cross Girders (Simply Supported Assumption)                              | 72 |
| 4.8 | Simplifying The Second Moment Of Area (I) for Rectangular Cross-Sections | 75 |
|     | Example 13: Conceptual Design of Bateman's Bay Bridge                    |    |
|     | Box Girders (Stage 1)                                                    | 76 |
|     | Discussion Exercises                                                     | 78 |

| 5 |     | FROM STRENGTH to SERVICEABILITY DESIGN                                 | 82  |
|---|-----|------------------------------------------------------------------------|-----|
|   | 5.1 | Finding The Neutral Axis                                               | 82  |
|   | 5.2 | The Parallel Axis Theorem                                              | 83  |
|   |     | Example 14: Conceptual Design of Bateman's Bay Bridge                  |     |
|   |     | Box Girders (Stage 2)                                                  | 84  |
|   | 5.3 | Deflection Of Beams                                                    | 89  |
|   |     | 5.3.1 Deflection Of Beams - Direct Integration                         | 89  |
|   |     | Example 15: Deflection of Simply Supported UDLs by Direct Integration  |     |
|   |     | (Bateman's Bay Bridge Stringer Application)                            | 90  |
|   |     | 5.3.2 Beam Deflections Using Singularity Functions (Macauley's Method) | 92  |
|   |     | Example 16: Deflection of Concentrated Loads by Macauley's Method      |     |
|   |     | (Bateman's Bay Bridge Stringer Application)                            | 93  |
|   |     | Discussion Exercises                                                   | 96  |
| 6 |     | CONVERGENCE HEURISTICS for DESIGN and ANALYSIS                         | 97  |
|   | 6.1 | The Need For Design/Analysis Convergence                               | 97  |
|   | 6.2 | Heuristic Knowledge                                                    | 97  |
|   | 6.3 | Steel Design Sizing Heuristics                                         | 98  |
|   | 6.4 | Reinforced Concrete Design Sizing Heuristics                           | 100 |
|   | 6.5 | Approximate Conceptual Analysis Techniques                             | 102 |
|   | 6.6 | Approximate Quantitative Analysis                                      | 103 |
|   |     | 6.6.1 Vertical Loads On Rigid Building Frames                          | 103 |
|   |     | Example 17: Conceptual Design of Bateman's Bay Bridge Stringers        |     |
|   |     | (Rigidly Supported Assumption)                                         | 104 |
|   |     | 6.6.2 Lateral Loads On Rigid Portal Frames                             | 106 |
|   |     | 6.6.3 Lateral Loads On Rigid Building Frames                           | 107 |
|   |     | 6.6.4 Trusses With Two Diagonals In Each Panel                         | 108 |
|   |     | Example 18: Conceptual Wind Load Design of Bateman's Bay Bridge        |     |
|   |     | (Lower Lateral Bracing Diagonals)                                      | 110 |
|   |     | APPENDIX A (Competency Exercises)                                      | 113 |
|   |     | REFERENCES                                                             | 145 |