Applied Colloid and Surface Chemistry

Contents

Pr	Preface	
1	Introduction	1
	Introduction to the nature of colloidal solutions	1
	The forces involved in colloidal stability	4
	Types of colloidal systems	5
	The link between colloids and surfaces	6
	Wetting properties and their industrial importance	8
	Recommended resource books	10
	Appendices	11
2	Surface Tension and Wetting	13
	The equivalence of the force and energy description of surface tension	
	and surface energy	13
	Derivation of the Laplace pressure equation	15
	Methods for determining the surface tension of liquids	17
	Capillary rise and the free energy analysis	21
	The Kelvin equation	24
	The surface energy and cohesion of solids	27
	The contact angle	28
	Industrial Report: Photographic-quality printing	33
	Sample problems	35
	Experiment 2.1: Rod in free surface (RIFS) method for the	
	measurement of the surface tension of liquids	37
	Experiment 2.2: Contact angle measurements	42
3	Thermodynamics of Adsorption	47
	Basic surface thermodynamics	47
	Derivation of the Gibbs adsorption isotherm	49
	Determination of surfactant adsorption densities	52

viii CONTENTS

	Industrial Report: Soil microstructure, permeability and	<i>-</i>
	interparticle forces	54
	Sample problems Experiment 3.1: Adsorption of acetic acid on to activated charcoal	55 56
4	Conformer on 1 C. If accounts	
4	Surfactants and Self-assembly	61
	Introduction to surfactants	61
	Common properties of surfactant solutions Thermodynamics of surfactant self-assembly	63
	Self-assembled surfactant structures	65 68
	Surfactants and detergency	70
	Industrial Report: Colloid science in detergency	74 74
	Sample problems	75
	Experiment 4.1: Determination of micelle ionization	75
_	P 1: 150 1:	
5	Emulsions and Microemulsions	79
	The conditions required to form emulsions and microemulsions	79
	Emulsion polymerization and the production of latex paints	81
	Photographic emulsions	84
	Emulsions in food science	85
	Industrial Report: Colloid science in foods	8.5
	Experiment 5.1: Determination of the phase behaviour of microemulsions	0.7
	Experiment 5.2: Determination of the phase behaviour of	87
	concentrated surfactant solutions	90
_	Charact Callett	0.2
6	Charged Colloids	93
	The formation of charged colloids in water	93
	The Debye length	94
	The Debye length The surface charge density	99
	The zeta potential	101
	The Hückel equation	102 103
	The Smoluchowski equation	103
	Corrections to the Smoluchowski equation	108
	The zeta potential and flocculation	110
	The interaction between double-layers	112
	The Derjaguin approximation	116
	Industrial Report: The use of emulsions in coatings	117
	Sample problems	119
	Experiment 6.1: Zeta potential measurements at the silica/	
	water interface	120
7	Van der Waals forces and Colloid Stability	127
	Historical development of van der Waals forces and the	~= /
	Lennard-Iones potential	127

CONTENTS	ix
Dispersion forces	131
Retarded forces	132
Van der Waals forces between macroscopic bodies	133
Theory of the Hamaker constant	134
Use of Hamaker constants	140
The DLVO theory of colloid stability	140
Flocculation	142
Some notes on van der Waals forces	148
Industrial Report: Surface chemistry in water treatment	148
Sample problems	150
8 Bubble coalescence, Foams and Thin Surfactant Fil	ms 153
Thin-liquid-film stability and the effects of surfactants	153
Thin-film elasticity	156
Repulsive forces in thin liquid films	157
Froth flotation	158
The Langmuir trough	159
Langmuir-Blodgett films	166
Experiment 8.1: Flotation of powdered silica	168
Appendices	173
1 Useful Information	173
2 Mathematical Notes on the Poisson–Boltzmann Equation	175
3 Notes on Three-dimensional Differential Calculus and the	173
Fundamental Equations of Electrostatics	179
Index	