Chemical, Biochemical, and Engineering Thermodynamics STANLEY I. SANDLER 4 E ## **Contents** | CHAPTER 1 | INTRODUCTION | 1 | |------------|--|-----| | CHAI TEK I | 1.1 The Central Problems of Thermodynamics 4 | J | | | 1.2 A System of Units 5 | | | | 1.3 The Equilibrium State 7 | | | | 1.4 Pressure, Temperature, and Equilibrium 10 | | | | 1.5 Heat, Work, and the Conservation of Energy 151.6 Specification of the Equilibrium State; Intensive and Extensive Variables; Equations of State 18 | | | | 1.7 A Summary of Important Experimental Observations 21 | | | | 1.8 A Comment on the Development of Thermodynamics 23
Problems 23 | | | CHAPTER 2 | CONSERVATION OF MASS | 25 | | | 2.1 A General Balance Equation and Conserved Quantities 2.2 Conservation of Mass 30 | | | | 2.3 The Mass Balance Equations for a Multicomponent System with a Chemical Reaction 35 | i | | | 2.4 The Microscopic Mass Balance Equations in Thermodynamics and Fluid Mechanics (Optional) (CD only) | | | | Problems 44 | | | CHAPTER 3 | CONSERVATION OF ENERGY | 45 | | | 3.1 Conservation of Energy 47 | | | | 3.2 Several Examples of Using the Energy Balance 54 | | | | 3.3 The Thermodynamic Properties of Matter 593.4 Applications of the Mass and Energy Balances 69 | | | | 3.5 Conservation of Momentum 92 | | | | 3.6 The Microscopic Energy Balance (Optional) (CD only) Problems 93 | | | CHAPTER 4 | ENTROPY: AN ADDITIONAL BALANCE EQUATION | 98 | | | 4.1 Entropy: A New Concept 99 | | | | 4.2 The Entropy Balance and Reversibility 107 | | | | 4.3 Heat, Work, Engines, and Entropy 1134.4 Entropy Changes of Matter 124 | | | | 4.5 Applications of the Entropy Balance 127 | | | | 4.6 The Microscopic Entropy Balance (Optional) (CD only) Problems 139 | | | CHAPTER 5 | LIQUEFACTION, POWER CYCLES, AND EXPLOSIONS | 147 | | | 5.1 Liquefaction 147 | | | | 5.2 Power Generation and Refrigeration Cycles 152 | | | | 5.3 The Thermodynamics of Mechanical Explosions 173 Problems 182 | | | CHAPTER 6 | THE THERMODYNAMIC PROPERTIES OF REAL SUBSTANCES | 187 | | | 6.1 Some Mathematical Preliminaries 188 | 10/ | | | 6.2 The Evaluation of Thermodynamic Partial Derivatives 192 | | | | - | | | an Comming | | | |------------|--|-----| | | 6.3 The Ideal Gas and Absolute Temperature Scales 206 6.4 The Evaluation of Changes in the Thermodynamic Properties of Real Substance Accompanying a Change of State 207 6.5 An Example Involving the Change of State of a Real Gas 232 6.6 The Principle of Corresponding States 237 6.7 Generalized Equations of State 250 6.8 The Third Law of Thermodynamics 254 6.9 Estimation Methods for Critical and Other Properties 255 6.10 More About Thermodynamic Partial Derivatives (Optional) (CD only) Problems 259 | es | | CHAPTER 7 | EQUILIBRIUM AND STABILITY IN ONE-COMPONENT SYSTEMS 2 | 168 | | | 7.1 The Criteria for Equilibrium 269 7.2 Stability of Thermodynamic Systems 276 7.3 Phase Equilibria: Application of the Equilibrium and Stability Criteria to the Equation of State 283 7.4 The Molar Gibbs Energy and Fugacity of a Pure Component 290 7.5 The Calculation of Pure Fluid-Phase Equilibrium: The Computation of Vapor Pressure from an Equation of State 305 7.6 Specification of the Equilibrium Thermodynamic State of a System of Several Phases: The Gibbs Phase Rule for a One-Component System 313 7.7 Thermodynamic Properties of Phase Transitions 317 7.8 Thermodynamic Properties of Small Systems, or Why Subcooling and Superheating Occur 324 Problems 327 | | | CHAPTER 8 | | 336 | | | 8.1 The Thermodynamic Description of Mixtures 337 8.2 The Partial Molar Gibbs Energy and the Generalized Gibbs-Duhem Equation 346 8.3 A Notation for Chemical Reactions 350 8.4 The Equations of Change for a Multicomponent System 353 8.5 The Heat of Reaction and a Convention for the Thermodynamic Properties of Reacting Mixtures 361 | | | | | 368 | | CHAPTER 9 | ESTIMATION OF THE GIBBS ENERGY AND FUGACITY OF A COMPONENT IN A MIXTURE | 399 | | | 9.1 The Ideal Gas Mixture 400 9.2 The Partial Molar Gibbs Energy and Fugacity 404 9.3 Ideal Mixture and Excess Mixture Properties 408 9.4 Fugacity of Species in Gaseous, Liquid, and Solid Mixtures 419 9.5 Several Correlative Liquid Mixture Activity Coefficient Models 429 9.6 Two Predictive Activity Coefficient Models 443 | | | | 9.7 Fugacity of Species in Nonsimple Mixtures 451 9.8 Some Comments on Reference and Standard States 461 9.9 Combined Equation-of-State and Excess Gibbs Energy Model 462 9.10 Electrolyte Solutions 465 9.11 Choosing the Appropriate Thermodynamic Model 473 Appendix 9.1 A Statistical Mechanical Interpretation of the Entropy of Mixing Ideal Mixture (CD only) 476 Appendix 9.2 Multicomponent Excess Gibbs Energy (Activity Coefficient) Model 476 Appendix 9.3 The Activity Coefficient of a Solvent in an Electrolyte Solution Problems 482 | | |------------|--|-------| | CHAPTER 10 | VAPOR-LIQUID EQUILIBRIUM IN MIXTURES | 489 | | | 10.0 Introduction to Vapor-Liquid Equilibrium 490 10.1 Vapor-Liquid Equilibrium in Ideal Mixtures 492 Problems for Section 10.1 518 10.2 Low-Pressure Vapor-Liquid Equilibrium in Nonideal Mixtures 519 Problems for Section 10.2 548 10.3 High-Pressure Vapor-Liquid Equilibria Using Equations of State (φ-φ Me 556 Problems for Section 10.3 572 | thod) | | CHAPTER 11 | | | | | OTHER TYPES OF PHASE EQUILIBRIA IN FLUID MIXTURES 11.1 The Solubility of a Gas in a Liquid 576 Problems for Section 11.1 591 11.2 Liquid-Liquid Equilibrium 593 Problems for Section 11.2 621 11.3 Vapor-Liquid-Liquid Equilibrium 625 Problems for Section 11.3 633 11.4 The Partitioning of a Solute Among Two Coexisting Liquid Phases; The Distribution Coefficient 636 Problems for Section 11.4 646 11.5 Osmotic Equilibrium and Osmotic Pressure 648 Problems for Section 11.5 655 | 575 | | CHAPTER 12 | MIXTURE PHASE EQUILIBRIA INVOLVING SOLIDS | 658 | | | 12.1 The Solubility of a Solid in a Liquid, Gas, or Supercritical Fluid 659 Problems for Section 12.1 669 12.2 Partitioning of a Solid Solute Between Two Liquid Phases 670 Problem for Section 12.2 673 12.3 Freezing-Point Depression of a Solvent Due to the Presence of a Solute; the Freezing Point of Liquid Mixtures 673 Problems for Section 12.3 678 12.4 Phase Behavior of Solid Mixtures 679 Problems for Section 12.4 687 12.5 The Phase Behavior Modeling of Chemicals in the Environment 689 Problems for Section 12.5 695 12.6 Process Design and Product Design 695 Problem for Section 12.6 701 12.7 Concluding Remarks on Phase Equilibria 701 | ne | | CHAPTER 13 | CHEMICAL EQUILIBRIUM | 703 | |------------|---|--------| | | 13.1 Chemical Equilibrium in a Single-Phase System 704 13.2 Heterogeneous Chemical Reactions 737 13.3 Chemical Equilibrium When Several Reactions Occur in a Single Phase 13.4 Combined Chemical and Phase Equilibrium 760 | 750 | | | Problems 767 | | | CHAPTER 14 | THE BALANCE EQUATIONS FOR CHEMICAL REACTORS AND ELECTROCHEMISTRY | 778 | | | 14.1 The Balance Equations for a Tank-Type Chemical Reactor 779 14.2 The Balance Equations for a Tubular Reactor 787 14.3 Overall Reactor Balance Equations and the Adiabatic Reaction Temperature 791 14.4 Thermodynamics of Chemical Explosions 799 14.5 Availability and Available Work in Chemically Reacting Systems 805 | re | | | 14.6 Introduction to Electrochemical Processes 810 Problems 819 | | | CHAPTER 15 | SOME BIOCHEMICAL APPLICATIONS OF THERMODYNAMICS | 822 | | | 15.1 Acidity of Solutions 823 15.2 Ionization of Biochemicals 841 15.3 Solubilities of Weak Acids, Weak Bases, and Pharmaceuticals as a Function | | | | pH 851
15.4 Binding of a Ligand to a Substrate 858 | | | | 15.5 Some Other Examples of Biochemical Reactions 863 | | | | 15.6 Protein Concentration in an Ultracentrifuge 870 | | | | 15.7 Gibbs-Donnan Equilibrium and Membrane Potentials 873 15.8 Coupled Chemical Reactions: the ATP-ADP Energy Storage and Delivery
Mechanism 880 | | | | 15.9 Thermodynamic Analysis of Fermenters and Other Bioreactors 885Problems 908 | | | APPENDICES | | 913 | | | Appendix A.I Conversion Factors to SI Units 913 Appendix A.II The Molar Heat Capacities of Gases in the Ideal Gas (Zero-Pres | (Cura) | | | State 914 | isuic) | | | Appendix A.II The Thermodynamic Properties of Water and Steam 917 Appendix A.IV Enthalpies and Gibbs Energies of Formation 927 Appendix A.V Heats of Combustion 930 | | | | Appendix B Brief Descriptions of Computer Programs and Computer Aids for with This Book 931 | | | | Appendix B Descriptions of Computer Programs and Computer Aids for Use v This Book (CD only) CDB1 | vith | | | B.I Windows-Based Visual Basic Programs CDB1 B.II DOS-Based Basic Programs CDB9 B.III MATHCAD Worksheets CDB12 B.IV MATLAB Programs CDB14 | | | | Appendix C Answers to Selected Problems 933 | | | INDEX | | 936 | INDEX