


NALYTICAL TROUBLESHOOTING OF PROCESS MACHINERY ND PRESSURE VESSELS Including Real-World Case Studies

CONTENTS

	Preface	xvii
1	Introduction	1
2	Strength of Materials	4
	2.1 Load Calculations, 4	
	2.2 Stress Calculations, 6	
	2.2.1 Axial Stress, 6	
	2.2.2 Shear Stress, 7	
	2.2.3 Bending Stress, 8	
	2.2.4 Torsional Stress, 9	
	2.2.5 Combined Stresses, 9	
	2.2.6 Thermal Stresses, 10	
	2.2.7 Transient Temperatures and Stresses, 11	
	2.2.8 High-Temperature Creep, 13	
	2.2.9 Shell Stresses, 15	
	2.3 Piping Thermal Forces, Moments, and Frequencies, 16	
	2.3.1 Piping Failures, 18	

viii CONTENTS

- 2.4 Allowable and Design Stresses, 21
- 2.5 Fatigue Due to Cyclic Loading, 22
- 2.6 Elongation and Deflection Calculations, 25
- 2.7 Factor of Safety, 28
- 2.8 Case History: Agitator Steady Bearing Loading, 30
 - 2.8.1 Additional Agitator Guidelines (Single Impeller), 32
- 2.9 Case History: Extruder Shaft Failure, 33
- 2.10 Dynamic Loading, 34
 - 2.10.1 Centrifugal Force, 34
 - 2.10.2 Inertias and WR^2 , 36
 - 2.10.3 Energy Relationships, 37
- 2.11 Case History: Centrifuge Bearing Failures, 38
- 2.12 Case History: Bird Impact Force on a Windscreen, 40
- 2.13 Case History: Torsional Impact on a Propeller, 42
- 2.14 Case History: Startup Torque on a Motor Coupling, 43
- 2.15 Case History: Friction Clamping Due to Bolting, 44
- 2.16 Case History: Failure of a Connecting Rod in a Race Car, 45
- 2.17 Bolting, 48
 - 2.17.1 Holding Capacity, 48
 - 2.17.2 Limiting Torque, 48
 - 2.17.3 Bolt Elongation and Relaxation, 50
 - 2.17.4 Torquing Methods, 51
 - 2.17.5 Fatigue of Bolts, 52
 - 2.17.6 Stripping Strength of Threads, 54
 - 2.17.7 Case History: Power Head Gasket Leak, 54
- 2.18 Ball and Roller Bearing Life Estimates, 58
 - 2.18.1 Case History: Bearing Life of a Shaft Support, 59
 - 2.18.2 Coupling Offset and Bearing Life, 60
- 2.19 Hydrodynamic Bearings, 61
 - 2.19.1 Shell and Pad Failures, 63

CONTENTS ix

1	20	Gears.	65

- 2.20.1 Gear Acceptability Calculations, 65
- 2.20.2 Case History: Uprate Acceptability of a Gear Unit, 69
- 2.21 Interference Fits, 72
 - 2.21.1 Keyless Hydraulically Fitted Hubs, 75
 - 2.21.2 Case History: Taper Fit Holding Ability, 76
 - 2.21.3 Case History: Flying Hydraulically Fitted Hub, 78
- 2.22 Strength of Welds, 80
- 2.23 Fatigue of Welds, 81
- 2.24 Repair of Machinery, 82
 - 2.24.1 Shafts, 82
 - 2.24.2 Housings and Cases, 83
 - 2.24.3 Gearboxes, 83
 - 2.24.4 Sleeve Bearings and Bushing Clearances, 83
 - 2.24.5 Alignments, 83
 - 2.24.6 Acceptable Coupling Offset and Angular Misalignment, 84
 - 2.24.7 Vibration Measurements, 84
- 2.25 Interpreting Mechanical Failures, 85
 - 2.25.1 Failures with Axial, Bending, and Torsional Loading, 85
 - 2.25.2 Gear Teeth Failures, 87
 - 2.25.3 Spring Failures, 89
 - 2.25.4 Bolt Failures, 90
 - 2.25.5 Bearing Failures, 91
 - 2.25.6 Reading a Bearing, 93
 - 2.25.7 Large Gearbox Keyway and Shaft Failures, 95
- 2.26 Case History: Sizing a Bushing Running Clearance, 96
- 2.27 Case History: Galling of a Shaft in a Bushing, 99
- 2.28 Case History: Remaining Fatigue Life with Cyclic Stresses, 101
- 2.29 Procedure for Evaluating Gasketed Joints, 103
- 2.30 Gaskets in High-Temperature Service, 106

X CONTENTS

2.31 O-Ring Evaluation, 107	
2.32 Case History: Gasket That Won't Pass a Hydrotest, 108	
2.33 Case History: Heat Exchanger Leak Due to Temperature, 109	
2.34 Equipment Wear, 113	
2.35 Case History: Excessive Wear of a Ball Valve, 115	-
Vibration Analysis	117
3.1 Spring-Mass Systems and Resonance, 117	
3.2 Case History: Critical Speed Problem on Steam Turbine, 121	
3.3 Determining Vibration Amplitudes, 123	
3.3.1 Allowable Levels for X or F at Resonance, 125	
3.4 Case History: Vibratory Torque on the Gear of a Ship System, 125	
3.5 Torsional Vibration, 127	
3.6 Case History: Torsional Vibration of a Motor-Generator-Blower, 128	
3.7 Vibration Diagnosis and Campbell Diagrams, 129	
3.8 Case History: Effect of a Torsional Load Applied Suddenly, 134	
3.9 Flow-Induced Vibrations, 136	
3.10 Case History: Heat Exchanger Tube Vibration, 137	
3.11 Case History: Piping Vibration Failures, 138	
Fluid Flow	141
4.1 Continuity Equation, 141	
4.2 Bernoulli's Equation, 142	
4.3 Pressure Drop, 143	
4.4 Forces Due to Fluids, 143	
4.5 Case History: Piping Failure Due to Water Hammer, 144	
4.6 Case History: Centrifugal Pump System, 146	
4.6.1 System Curves, 146	
4.6.2 Pump Curves, 148	
4.6.3 Net Positive Suction Head, 150	
4.6.4 Pump Laws, 151	
4.6.5 Series and Parallel Pump Operation, 152	

CONTENTS xi

	4.6.6 Blocked-in-Pump Concern, 153	
	4.6.7 Cryogenic Service Concerns, 154	
	4.6.8 Pump Control, 155	
	4.7 Case History: Wreck of a Centrifugal Pump, 155	
	4.8 Case History: Airfoil Aerodynamic Loads, 157	
	4.9 Case History: Pressure Loss Through Slots, 158	
	4.10 Friction Losses in Piping Systems, 161	
	4.11 Case History: Pipe Friction, 162	
5	Heat Transfer	164
	5.1 Conduction, 164	
	5.2 Convection, 165	
	5.3 Radiation, 167	
	5.4 Heat Sources, 168	
	5.5 Case History: Insulation Burnout of a Resistor Bank, 169	
	5.6 Case History: Embedded Bearing Temperature, 170	
	5.7 Types of Heat Exchangers, 172	
	5.8 Heat Exchanger Design, 173	
	5.9 Case History: Verifying the Size of an Oil Cooler, 176	
	5.10 Case History: Temperature Distribution Along a Flare Line, 178	
	5.11 Case History: Derivation of Pipe Temperature Distribution, 180	
6	Compressor Systems and Thermodynamics	182
	6.1 Ideal Gas Laws, 182	
	6.2 Case History: Nonrelieving Explosion Relief Valve, 184	
	6.3 Energy Equation, 186	
	6.4 Case History: Air Conditioner Feasibility Study, 187	
	6.5 Centrifugal Compressor Operation, 190	
	6.6 Compressor Configurations, 192	
	6.7 Centrifugal Compressor Head, Flow, and Horsepower, 193	
	6.8 Compressor Surge, 195	
	6.9 Fan Laws, 197	

	6.10	Flow-Head Curve in Troubleshooting, 197	
	6.11	Reciprocating Gas Compressors, 198	
	6.12	Component Failures and Prevention, 198	
	6.13	Reciprocating Compressor Horsepower Calculations, 208	
	6.14	Troubleshooting Reciprocating Compressors Using Gas Calculations, 210	:
	6.15	Mechanical Seals, 210	
	6.16	Flexible Gear, Diaphragm, and Disk Pack Couplings, 211	
7	Stati	istics	218
	7.1	Average, Range, Variance, and Standard Deviation, 218	
	7.2	Histograms and Normal Distributions, 219	
	7.3	Case History: Power Cylinder Life Comparison, 222	
	7.4	Mean Time Between Failures, 223	
	7.5	Case History: MTBF for a Gas Engine Compressor, 223	
	7.6	Reliability, 225	
	7.7	Deterministic and Probabilistic Modeling, 228	
8	Prob	olem Solving and Decision Making	229
	8.1	The 80–20 Relationship, 229	
	8.2	Going Through the Data, 230	
	8.3	Problem-Solving Technique, 232	
	8.4	Case History: Loss of a Slurry Pump, 234	
	8.5	Case History: Fatigued Motor Shaft, 235	
	8.6	Case History: Coupling Failure, 235	
	8.7	Case History: Motorcycle Won't Start, 238	
	8.8	Case History: Galled Die, 238	
	8.9	Seven Causes, 239	
	8.10	Decision-Making Technique, 240	
	8.11	Case History: Selection of a Barrel Lifter, 240	

CONTENTS xiii

9	Mate	erials o	f Construction	242
	9.1	Carbor	Steels, 244	
	9.2	High-S	Strength Low-Alloy Steels, 245	
	9.3	Marter	nsitic Stainless Steels, 245	
	9.4	Austen	itic Stainless Steels, 245	
	9.5	Monel	400, 246	
	9.6	17 –4 F	PH, 246	
	9.7	Incolo	y 825, 246	
	9.8	Incone	1718, 246	
	9.9	Structu	ral Steel, 247	
	9.10	All Ste	eels Are Not the Same, 247	
	9.11	Useful	Material Properties, 247	
	9.12	Heat T	reatments, 248	
	9.13	Failure	Modes of Shafts, Bolting, Structures, and Pressure Vessels,	249
	9.14	Frettin	g Corrosion, 253	
10	Mec	hanical	System Modeling, with Case Histories	259
	10.1	Sizing	Up the Problem, 259	
	10.2	Case H	listories, 264	
	10.3	Failure	es Caused by Excessive Loads, 264	
		10.3.1	Case History: Agitator Bolt Failure, 264	
		10.3.2	Case History: Loosening of Counterweight Bolts, 267	
		10.3.3	Case History: Evaluating Internal Thread Strip-Out, 269	
		10.3.4	Case History: Analyzing a Spline Failure, 271	
		10.3.5	Case History: Bending of Impeller Blades, 273	
		10.3.6	Case History: Compressor Rod Failure, 274	
		10.3.7	Case History: Seal Failure Due to Misalignment of an Agitator Shaft, 276	
		10.3.8	Case History: Gear Tooth Pitting Failure, 277	
		10.3.9	Case History: Impact Load Effect on a Large Gearbox Bearing, 280	

xiv CONTENTS

		10.3.10 Case History: Motor Shaft Failure, 284	
		10.3.11 Case History: In-Flight Aircraft Crankshaft Failure, 285	
		10.3.12 Case History: Pitting Failure Due to a Poorly Distributed Bearing Load, 287	
		10.3.13 Case History: Failure of a Preloaded Fan Bearing, 289	
		10.3.14 Case History: Separating Loads in an Extruder, 291	
		10.3.15 Case History: Containment of an Impeller, 293	
	10.4	Failures Caused by Wear, 296	
		10.4.1 Case History: Examining the Wear of Extruder Screws, 296	
		10.4.2 Case History: Wear of a Spline Clutch, 302	
	10.5	Failures Caused by Thermal Loads, 305	
		10.5.1 Case History: Thermal Distortions Move a 50-Ton Gearbox, 305	
		10.5.2 Case History: Thermally Bowed Shaft, 307	
		10.5.3 Case History: Steam Turbine Diaphragm Failure, 309	
		10.5.4 Case History: Screw Compressor Rotor Rub, 311	
		10.5.5 Case History: Hidden Load in a Three Bearing Machine, 313	
	10.6	Miscellaneous Failures, 315	
		10.6.1 Case History: Crack Growth in a Rotor, 315	
		10.6.2 Case History: Structural Failure Due to Misalignment, 317	
		10.6.3 Case History: Oil Film Thickness of a Diesel Engine Bearing, 321	
		10.6.4 Case History: Leaking Flange Gasket, 322	
11	Fitne	ss for Service, with Case Histories 32	25
	11.1	A Little About Corrosion, 326	
	11.2	Stress Corrosion Cracking, 327	
	11.3	Uniform Corrosion, 328	
		11.3.1 Case History: Local Corrosion of a Vessel Wall, 328	
	11.4	Pitting Corrosion, 330	
		11.4.1 Case History: Pitting Corrosion of a Vessel Wall, 330	

CONTENTS XV

Index 3	49
References 3	45
11.9 Troubleshooting Isn't Easy, 341	
11.8 Finding Those Cracks, 341	
11.7 Crack Growth and Fatigue Life, 339	
11.6.1 Case History: Cold Service Vessel, 336	
11.6 Cold Service Evaluations, 336	
11.5.2 Case History: Crack Like Defect in a Vessel Wall, 334	
11.5.1 Academic Example: Temperature Effect on Steel Plate, 333	
11.5 Brittle Fracture Concerns, 331	