
Biometric Authentication

A Machine Learning Approach

S.Y. Kung • M.W. Mak • S.H. Lin

Prentice Hall Information and System Sciences Series Thomas Kailath, Series Editor

CONTENTS

Ρl	PREFACE			xiii
1	OVERVIEW			1
	1.1	Introd	luction	1
	1.2	Biome	etric Authentication Methods	2
	1.3	Face I	Recognition: Reality and Challenge	3
	1.4	Speak	er Recognition: Reality and Challenge	6
	1.5	Road	Map of the Book	8
2	BIOMETRIC AUTHENTICATION SYSTEMS			11
	2.1	Introd	luction	11
	2.2	Design	n Tradeoffs	11
		2.2.1	Accuracy versus Intrusiveness	12
		2.2.2	Recognition versus Verification	14
		2.2.3	Centralized versus Distributed Systems	15
		2.2.4	Processing Speed	16
		2.2.5	Data Storage Requirements	18
		2.2.6	Compatibility between Feature Extractor and Classifier	19
	2.3	Featur	re Extraction	20
		2.3.1	Criteria of Feature Extraction	20
		2.3.2	Projection Methods for Dimension Reduction	21
		2.3.3	Feature Selection	24
		2.3.4	Clustering Methods: Gaussian Mixture Models	25
	2.4	Adapt	tive Classifiers	26
		2.4.1	Neural Networks	27
		2.4.2	Training Strategies	28

		2.4.3	Criteria on Classifiers	28
		2.4.4	Availability of Training Samples	29
	2.5	Visual	-Based Feature Extraction and Pattern Classification	30
		2.5.1	Geometric Features	31
		2.5.2	Template Features	32
		2.5.3	Texture Features	33
		2.5.4	Subspace Projection for Feature Reduction	34
		2.5.5	Neural Networks for Feature Selection	34
	2.6	Audio	-Based Feature Extraction and Pattern Classification	35
		2.6.1	Low-Level Features	35
		2.6.2	High-Level Features	40
		2.6.3	Robustness in Speech Features	41
		2.6.4	Classification Schemes for Speech-Based Biometrics	42
	2.7	Concl	uding Remarks	43
3	EX.	PECT.	ATION-MAXIMIZATION THEORY	50
	3.1	Introd	luction	50
		3.1.1	K-Means and VQ algorithms	50
		3.1.2	Gaussian Mixture Model	51
		3.1.3	Expectation-Maximization Algorithm	52
	3.2	Tradi	tional Derivation of EM	54
		3.2.1	General Analysis	54
		3.2.2	Convergence Property of EM	57
		3.2.3	Complete-Data Likelihood	58
		3.2.4	EM for GMMs	61
	3.3	An E	ntropy Interpretation	65
		3.3.1	Incomplete-Data Likelihood	66
		3.3.2	Simulated Annealing	67
		3.3.3	EM Iterations	69
		3.3.4	Special Case: GMM	71
		3.3.5	K-Means versus EM	71
	3.4	Doub	ly-Stochastic EM	72
		3.4.1	Singly-Stochastic Single-Cluster with Partial Data	74
		3.4.2	Doubly-Stochastic (Partial-Data and Hidden-State) Problem	7 5
	3.5	Conc	luding Remarks	78
4	$\mathbf{s}\mathbf{u}$	PPOR	RT VECTOR MACHINES	85
	4.1	Intro	duction	85

			vii
4.2	Fishe	r's Linear Discriminant Analysis	85
	4.2.1	A Two-Class Classifier	87
	4.2.2	Fisher's Discriminant Analysis	87
	4.2.3	The Bayes Optimality Property	89
	4.2.4	Fisher's Discriminant versus Least-Squares Classifiers	89
4.3	Linea	r SVMs: Separable Case	90
	4.3.1	Margin of Separation	91
	4.3.2	Wolfe Dual Optimization	92
	4.3.3	Support Vectors	93
	4.3.4	Decision Boundary	93
4.4	Linea	r SVMs: Fuzzy Separation	97
	4.4.1	Why Fuzzy Separation?	97
	4.4.2	Wolfe Dual Optimization	98
	4.4.3	Support Vectors in the Fuzzy Region	101
	4.4.4	Decision Boundary	103
	4.4.5	Probabilistic Function for Decision Confidence	107
	4.4.6	Invariance Properties of Linear SVMs	107
4.5	Nonli	near SVMs	108
	4.5.1	Two-Layer SVM Network Architectures	109
	4.5.2	Hidden Nodes and Retrieving Speed	112
	4.5.3	Training Criteria and Running Time	116
	4.5.4	Generalization Performance of Nonlinear SVMs	118
	4.5.5	Effects of Scaling and Shifting	124
4.6	Biome	etric Authentication Application Examples	131
MU	J LTI-L	AYER NEURAL NETWORKS	139
5.1	Introd	luction	139
5.2	Neuro	on Models	140
	5.2.1	Basis Functions (Net Functions)	140
	5.2.2	Activation Functions (Neuron Functions)	141
	5.2.3	Discriminant Functions (Output Functions)	141
5.3	Multi-	-Layer Neural Networks	142
	5.3.1	Multi-Layer Neural Models	143
	5.3.2	The Classic XOR Problem	144
5.4	The E	Back-Propagation Algorithms	144
	5.4.1	BP Algorithm for Multi-Layer LBF Networks	148
	5.4.2	BP Algorithm for Multi-Layer RBF Networks	148

	5.5	Two-S	tage Training Algorithms	151
		5.5.1	Two-Stage Training for RBF Networks	151
		5.5.2	Two-Stage Training for LBF Networks	157
	5.6	Genet	ic Algorithm for Multi-Layer Networks	158
		5.6.1	Basic Elements of GAs	159
		5.6.2	Operation of GAs	159
		5.6.3	Applications of GAs to Evolve Neural Networks	160
	5.7	Biome	etric Authentication Application Examples	170
6	MODULAR AND HIERARCHICAL NETWORKS			185
	6.1	Introd	luction	185
	6.2	Class-	Based Modular Networks	186
		6.2.1	Class-Based OCON Structure	188
		6.2.2	ACON versus OCON Networks	189
	6.3	Mixtu	re-of-Experts Modular Networks	190
		6.3.1	Local Experts and Gating Network	191
		6.3.2	LBF MOE Networks	192
		6.3.3	RBF MOE Networks	193
		6.3.4	Comparison of MLP and MOE	195
	6.4	Hiera	rchical Machine Learning Models	195
		6.4.1	Hierarchical Mixture-of-Experts	196
		6.4.2	Experts-in-Class and Classes-in-Expert Structures	202
	6.5	Biome	etric Authentication Application Examples	205
7	DE	CISIO	N-BASED NEURAL NETWORKS	209
	7.1	Intro	duction	209
	7.2	Basic	Decision-Based Neural Networks	209
		7.2.1	Decision-Based Learning Rule	210
		7.2.2	Comparison of MOE and DBNNs	214
	7.3	Hiera	rchical Design of Decision-Based Learning Models	216
		7.3.1	Hybrid Supervised/Unsupervised Learning Scheme	216
		7.3.2	Local Winners: Minimal Side-Effect Learning Rule	218
	7.4	Two-	Class Probabilistic DBNNs	221
		7.4.1	Discriminant Functions of PDBNNs	224
		7.4.2	Learning Rules for PDBNNs	226
		7.4.3	Threshold Updating	228
	7.5	Multi	iclass Probabilistic DBNNs	228
		7.5.1	Structure of Multiclass PDBNNs	229

٠	
1	v
Д	.∠∧

_			<u>1X</u>
	7.5.2	False Acceptance and False Rejection	230
	7.5.3	Learning Rules for Multiple Subnet PDBNNs	233
7.6	Biome	etric Authentication Application Examples	237
BI	OMET	RIC AUTHENTICATION BY FACE	
RE	COGN	IITION	241
8.1	Introd	luction	241
8.2	Facial	Feature Extraction Techniques	243
	8.2.1	Feature-Invariant Approaches	243
	8.2.2	Template-Based Approaches	244
8.3	Facial	Pattern Classification Techniques	249
8.4	Face I	Detection and Eye Localization	250
	8.4.1	Face Detection	251
	8.4.2	Eye Localization	255
	8.4.3	Assisting Realtime Face Recognition	256
8.5	PDBN	NN Face Recognition System Case Study	258
	8.5.1	Face Detection and Eye Localization	260
	8.5.2	Facial Region	260
	8.5.3	Frontal View Faces	261
	8.5.4	Presence of Intruder Patterns	263
	8.5.5	Invariance Assurance	264
	8.5.6	Training Pattern Generation	266
	8.5.7	Hierarchical Face Recognition System	266
8.6	Appli	cation Examples for Face Recognition Systems	268
	8.6.1	Network Security and Access Control	269
	8.6.2	Video Indexing and Retrieval	269
	8.6.3	Airport Security Application	272
	8.6.4	Face Recognition Based on a Three-Dimensional CG Model	274
	8.6.5	Opportunities for Commercial Applications	274
8.7	Concl	uding Remarks	276
\mathbf{BI}^{0}	OMET	RIC AUTHENTICATION BY VOICE	
	RECOGNITION 2		
9.1	Introd	luction	280
9.2	Speak	er Recognition	281
	9.2.1	Components of Speaker Verification Systems	281
	9.2.2	Speaker-Specific Features	281
	9.2.3	Speaker Modeling	282
		- 9	

	9.2.4	Threshold Determination	284
	9.2.5	Performance Evaluation	285
	9.2.6	Speaker Recognition in Adverse Environments	286
9.3	Kernel	-Based Probabilistic Speaker Models	286
	9.3.1	Gaussian Mixture Models	287
	9.3.2	Elliptical Basis Function Networks	287
	9.3.3	Probabilistic Decision-Based Neural Networks	289
	9.3.4	Comparison of Probabilistic Speaker Models	290
9.4	Hands	et and Channel Distortion	301
	9.4.1	Handset and Channel Compensation Techniques	303
	9.4.2	Stochastic Feature Transformation	305
	9.4.3	Stochastic Model Transformation	318
	9.4.4	Out-of-Handset Rejection	332
9.5	Blind	Handset-Distortion Compensation	345
	9.5.1	Blind Stochastic Feature Transformation	346
	9.5.2	Integration of Blind and Supervised Compensation	352
9.6	Speak	er Verification Based on Articulatory Features	353
	9.6.1	Articulatory Feature Extraction	354
	9.6.2	AF-Based Speaker Verification	356
	9.6.3	Fusion of Spectral and Articulatory Features	358
9.7	Conch	uding Remarks	361
10 MU	LTICU	UE DATA FUSION	368
10.1	Introd	luction	368
10.2	Sensor	r Fusion for Biometrics	369
	10.2.1	Feature-Level Fusion	370
	10.2.2	Decision-Level Fusion	370
10.3	Hierai	chical Neural Networks for Sensor Fusion	373
	10.3.1	PDBNNs for Multichannel Fusion	374
	10.3.2	Class-Dependent Channel Fusion	375
	10.3.3	Data-Dependent Channel Fusion	376
10.4	Multi	sample Fusion	378
	10.4.1	Data-Dependent Decision Fusion Model	380
	10.4.2	Fusion of Sorted Scores	385
	10.4.3	Adaptation of Prior Scores	389
•	10.4.4	Experiments and Results	393
10.5	Audio	and Visual Biometric Authentication	404

		xi
	10.5.1 AV Feature Extraction	405
	10.5.2 AV Multisample Fusion	406
10.6	Concluding Remarks	408
APPE	NDIX A CONVERGENCE PROPERTIES OF EM	414
APPE	NDIX B AVERAGE DET CURVES	416
APPE	NDIX C MATLAB PROJECTS	418
C.1	Matlab Project 1: GMMs and RBF Networks for Speech Pattern	
	Recognition	418
	C.1.1 Introduction	418
	C.1.2 Objectives	418
	C.1.3 Procedures	418
C.2	Matlab Project 2: SVMs for Pattern Classification	421
	C.2.1 Objectives	421
	C.2.2 Procedures	421
BIBLI	OGRAPHY	427

457

INDEX