Paul F Fewster

S c a t t e r i n g from Semiconductors

2 nd Edition

Contents

<i>Chap</i> An I	nter 1 ntroduction to Semiconductor Materials	
1.1.	General outline Semiconductors	7
1.2. 1.3.		2 6
	Properties of X-rays	8
1.5.	Instrumentation	11
1.6.	Sample definition	12
	rences	21
Char	oter 2	
_	ntroduction to X-Ray Scattering	
2.1.	The interaction of X-ray photons with the sample	23
2.2.	The nature of the scattered X-ray photon with no energy loss	25
2.3.	The near exact theoretical description of scattering	33
	2.3.1. The condition of a single wave generated in a crystal	43
	2.3.2. The condition of two waves generated in a crystal	4.5
	2.3.3. A further discussion on the deviation parameter β_H	53
2.4.	A scattering theory to accommodate real crystals	56
2.5.	Scattering theory for structures with defects	60
2.6.	Scattering theory of reciprocal space maps	64
2.7.	Approximate theory: The kinematical approach	68
	2.7.1. Comparison between dynamical and kinematical	
	models of diffraction	68
	2.7.2. The important derivations of the kinematical theory	70
	2.7.3. Lateral dimension analysis2.7.4. Scattering by defects: Diffuse scattering	74 71
2.8.	Optical theory applied to reflectometry	82
۷.0.	2.8.1. Some general conclusions from this analysis	88
	2.8.2. Imperfect interfaces	9(
2.9.	In-plane scattering	90

x X-RAY SCATTERING FROM SEMICONDUCTORS

	Transmission geometry	99
	General conclusions rences	102 103
	oter 3 pment for Measuring Diffraction Patterns	
3.1. 3.2.	General considerations	105
3.2. 3.3.	Basics of the resolution function X-ray source	108
3.4.	X-ray detectors	111 113
). T .	3.4.1. The proportional detector	113
	3.4.2. The scintillation detector	117
	3.4.3. The solid state detector	118
	3.4.4. Position sensitive detectors	119
3.5.	Incident beam conditioning with passive components	121
	3.5.1. Incident beam slits: Fixed arrangement	121
	3.5.2. Incident beam slits: Variable arrangement	124
	3.5.3. Parallel Plate Collimators	126
	3.5.4. General considerations of slits	127
3.6.	Incident beam conditioning with active components	128
	3.6.1. Incident beam filters	128
	3.6.2. Incident beam single crystal conditioners	129
	3.6.2.1. Single crystal groove conditioners	130
	3.6.3. Multiple crystal monochromators	132
	3.6.4. Multilayer beam conditioners	136
	3.6.5. Beam pipes	138
3.7	Diffractometer options: Combinations with scattered beam	
	analysers	140
	3.7.1. Single slit incident and scattered beam diffractometers	141
	3.7.1.1. Applications in reflectometry	143
	3.7.2. Enhancements to the single slit incident and scattered beam diffractometers	1 / 4
		145
	3.7.3. Double slit incident and parallel plate collimator scattered beam diffractometers	146
	3.7.3.1. Enhanced double-slit incident and parallel-	J+1.
	plate collimator scattered beam diffractometers	147

	3.7.3.2. Applications for low-resolution in-plane	
	scattering	147
	3.7.4. Diffractometers using variable slit combinations	150
	3.7.4.1. Applications in reflectometry	150
3.8.	Scattered beam analysers with active components	151
	3.8.1. The double crystal diffractometer	151
	3.8.1.1. Alignment of high resolution diffractometers	152
	3.8.1.2. Applications of the double crystal diffractmeter	154
	3.8.2. The triple crystal diffractometer	154
	3.8.2.1. Applications of the triple axis diffractometer	155
	3.8.3. The multiple crystal diffractometer	155
	3.8.3.1. General considerations of data collection	160
	3.8.3.2. Alignment of multiple crystal diffractometers	161
	3.8.3.3. Three dimensional reciprocal space mapping	164
	3.8.3.4. Applications of multiple crystal	
	diffractometry	166
	3.8.3.5. In-plane scattering in very high resolution	167
3.9.	General conclusions	169
Refe	rences	170
Chaj	oter 4	
A Pr	ractical Guide to the Evaluation of Structural Parameters	
4 .1.	General considerations	171
4.2.	General principles	172
4.3.	Analysis of bulk semiconductor materials	173
	4.3.1. Orientation	174
	4.3.1.1. Surface orientation – the Laue method	174
	4.3.1.2. Determining the orientation by diffractometry	177
	4.3.1.2.2. Monochromator and open detector	
	method	177
	4.3.1.2.3. Multiple crystal diffractometer	4-0
	method	179
	4.3.1.3. Determining polar directions	180
	4.3.2. Revealing the mosaic structure in a bulk sample	182
	4.3.2.1. Mosaic samples with large tilts	182

xii X-RAY SCATTERING FROM SEMICONDUCTORS

	4.3.2.2.	High resolution scanning methods (Lang method)	184
	4.3.2.3.	Multiple crystal methods for revealing mosaic blocks	183
	4.3.3. Charact	erising the surface quality	192
		ing the absolute interatomic spacing in	
		nductor materials	195
	4.3.5. Measuri	ing the curvature of crystalline and non-	
	crystalli	ne substrates	197
1.4.	Analysis of ne	arly perfect semiconductor multi-layer	
	structures	-	200
	4.4.1. The firs	t assumption and very approximate method in	
	determi	ning composition	200
		ermination of thickness	205
	4.4.2.1.	Determining the thickness from the fringes	
		close to main scattering peaks	205
	4.4.2,2.	Determining the thickness from the fringes in	
		the reflectometry profile	208
	4.4.3. The sim	ulation of rocking curves to obtain	
	compos	ition and thickness	209
	4.4.3.1.	Example of an analysis of a nearly perfect	
		structure	210
	4.4.3.2.	Direct analysis from peak separation and	
		fringe separations	212
	4.4.3.3.	Simulation using an iterative adjustment of	
		the model	212
		4.4.3.3.1. Linking parameters to cope with	
	4 4 9 4	complex multi-layer structures	213
		Automatic fitting of the data by simulation	215
	4.4.3.5.	Data collection with the 2-crystal 4-reflection	
	4.40.6	monochromator and 3-reflection analyser	219
	4.4.3.6.	Reciprocal space map to analyse the	
	4 4 2 7	imperfections in samples	220
	4.4.3.7.	Taking account of tilts in rocking curve	
	1120	analyses Modelling the optent of the interfere	224
	4.4.3.8.	Modelling the extent of the interface	22.
		disruption in relaxed structures	226

	4.4.3.9.	Detailed analysis to reveal alloy segregation and the full structure of a multi-layer	227
	4.4.4. Analysi	s of periodic multi-layer structures	229
		The analysis using direct interpretation of the	
		scattering pattern	229
	4.4.4.2.	The analysis using basic kinematical theory	231
		Analysis of periodic multi-layers with	
		dynamical theory	235
	4.4.4.4.	Analysis of periodic structures with	
		reflectometry	238
	4.4.4.5.	Analysis of a nearly perfect epitaxial periodic	
		multi-layer	239
		4.4.4.5.1. Analysis based on the kinematical	
		approach	240
		4.4.4.5.2. Analysis based on the optical	
		theory with reflectometry	245
		4.4.4.5.3. Analysis based on the dynamical	
		theory simulation	247
4.5.	Analysis of mo	osaic structures (textured epitaxy)	248
4.6.		rtially relaxed multi-layer structures	
	(textured epita		249
		ing the state of strain in partially relaxed thin	
	layers		251
	4.6.2. Obtaining	ng the composition in partially relaxed thin	
	layers		253
	4.6.3. The mea	asurement of the degree of relaxation and	
		ch in thin layers	255
	4.6.4. The dete	ermination of relaxation and composition with	
	various	methods	256
	4.6.4.1.	Determination by reciprocal space maps on	
		an absolute scale	256
	4.6.4.2.	Determination by using a series of rocking	
		curves and analyser scans	258
	4.6.4.3.	Determination by reciprocal space maps on a	
	•	relative scale	260
		Determination by rocking curves alone	261
		Revealing dislocations and defects by	
		topography	263

xiv X-RAY SCATTERING FROM SEMICONDUCTORS

	4.6.4.6. Simulating structures with defects	264
4.7.	Analysis of laterally inhomogeneous multi-layers	201
4.7.	(textured polycrystalline)	266
	4.7.1. Direct analysis of laterally inhomogeneous	
	multi-layers	
	4.7.2. Simulation of laterally inhomogeneous multi-layers	266
		270
	4.7.3.1 Applying optionial layers with years and l	272
	4.7.3.1. Analysing epitaxial layers with very small	272
	twinned regions	273
	4.7.3.2. Analysing twin components larger than	27.4
	5 microns	274
4.8.	Analysis of textured polycrystalline semiconductors	275
4.9.	Analysis of nearly perfect polycrystalline materials	
	4.9.1. Measurement of thickness of CrO _x on glass	278
	4.9.2. Analysis of very weak scattering	280
4.10.	Concluding remarks	282
Refer	ences	282
Appe	endix 1	
	ral Crystallographic Relations	
A.1.	Introduction	285
A.2.	Interplanar spacings	285
	Stereographic projections	287
Subie	ct Index	295