SEPARATION PROCESS PRINCIPLES

Second Edition

J.D. Seader Ernest J. Henley

Contents

Chapter 1

About the Authors v
Preface to the Second Edition vii
Nomenclature xxi
Dimensions and Units xxxi

Separation Methods 3

PART 1 FUNDAMENTAL CONCEPTS 1

	1.0	Instructional Objectives 3
	1.1	Industrial Chemical Processes 4
	1.2	Mechanism of Separation 6
	1.3	Separation by Phase Addition or Creation 8
	1.4	Separation by Barrier 14
	1.5	Separation by Solid Agent 15
	1.6	Separation by External Field or Gradient 16
	1.7	Component Recoveries and Product Purities 17
	1.8	Separation Power 19
	1.9	Selection of Feasible Separation Processes 21
	Sumn	nary 23 References 24 Exercises 24
Chapter 2	Thei	modynamic Properties 27
	2.0	Instructional Objectives 27
	2.1	Energy, Entropy, and Availability Balances 27
	2.2	Phase Equilibria 30
		Fugacities and Activity Coefficients 31
		K-Values 32
	2.3	Ideal-Gas, Ideal-Liquid-Solution Model 34
	2.4	Graphical Correlations of Thermodynamic Properties 37
	2.5	Nonideal Thermodynamic Property Models 42
		P-v-T Equation-of-State Models 42
		Derived Thermodynamic Properties from P-v-T Models 44
	2.6	Activity-Coefficient Models for the Liquid Phase 47
		Activity Coefficients from Gibbs Free Energy 48
		Regular-Solution Model 48
		Nonideal Liquid Solutions 49
		Margules Equations 52
		van Laar Equation 52
		Local-Composition Concept and the Wilson Model 53

Chapter 3

Liquid-Liquid Equilibria 58
2.7 Difficult Mixtures 58
Predictive Soave-Redlich-Kwong (PSRK) Model 59
Electrolyte Solution Models 59
Polymer Solution Models 59
2.8 Selecting an Appropriate Model 59
Summary 60 References 60 Exercises 61
<u></u>
Mass Transfer 66
3.0 Instructional Objectives 67
3.1 Steady-State, Ordinary Molecular Diffusion 67
Fick's Law of Diffusion 68
Velocities in Mass Transfer 68
Equimolar Counterdiffusion 69
Unimolecular Diffusion 70
3.2 Diffusion Coefficients 72
•
Diffusivities of Flortrelates 77
Diffusivities of Electrolytes 77
Diffusivity of Biological Solutes in Liquids 78
Diffusivity in Solids 78 3.3 One-Dimensional, Steady-State and Unsteady-State, Molecular Diffusion
3.3 One-Dimensional, Steady-State and Unsteady-State, Molecular Diffusion Through Stationary Media 84
Steady State 84
Unsteady State 85
3.4 Molecular Diffusion in Laminar Flow 90
Falling Liquid Film 90
Boundary-Layer Flow on a Flat Plate 93
Fully Developed Flow in a Straight, Circular Tube 95
3.5 Mass Transfer in Turbulent Flow 97
Reynolds Analogy 99
Chilton–Colburn Analogy 99
Other Analogies 100
Theoretical Analogy of Churchill and Zajic 100
3.6 Models for Mass Transfer at a Fluid-Fluid Interface 103
Film Theory 103
Penetration Theory 104
Surface-Renewal Theory 105
Film-Penetration Theory 106
3.7 Two-Film Theory and Overall Mass-Transfer Coefficients 107
Gas-Liquid Case 107
Liquid—Liquid Case 109
Case of Large Driving Forces for Mass Transfer 109
Summary 111 References 112 Exercises 113

NRTL Model 55 UNIQUAC Model 56 UNIFAC Model 57

Chapter 4	Phas	se Equilibrium Calculations 117	
_	4.0	Instructional Objectives 117	
	4.1	The Gibbs Phase Rule and Degrees of Freedom 117	
		Degrees-of-Freedom Analysis 118	
	4.2	Binary Vapor-Liquid Systems 119	
	4.3	Azeotropic Systems 123	
	4.4	Multicomponent Flash, Bubble-Point, and Dew-Point Calculations	126
		Isothermal Flash 126	
•		Bubble and Dew Points 128	
		Adiabatic Flash 130	
	4.5	Ternary Liquid-Liquid Systems 131	
	4.6	Multicomponent Liquid-Liquid Systems 137	
	4.7	Solid-Liquid Systems 138	
		Leaching 138	
		Crystallization 141	
		Liquid Adsorption 142	
	4.8	Gas-Liquid Systems 144	
	4.9	Gas-Solid Systems 146	
		Sublimation and Desublimation 146	
		Gas Adsorption 146	
	4.10	Multiphase Systems 147	
		Approximate Method for a Vapor-Liquid-Solid System 148	
		Approximate Method for a Vapor-Liquid-Liquid System 149	
		Rigorous Method for a Vapor-Liquid-Liquid System 150	
	Sumr	mary 151 References 152 Exercises 152	
Chapter 5	Intu	advetion to Hybrid Systems and Cassadas 161	
Chapter 5	5.0	oduction to Hybrid Systems and Cascades 161 Instructional Objectives 161	
	5.0	Instructional Objectives 161 Cascade Configurations 161	
	5.2	Solid-Liquid Cascades 163	
	5.3	Single-Section, Liquid–Liquid Extraction Cascades 165	
	5.5	Cocurrent Cascade 165	
		Crosscurrent Cascade 165	
		Countercurrent Cascade 166	
	5.4	Multicomponent Vapor–Liquid Cascades 167	
	5.1	Single-Section Cascades by Group Methods 167	
		Two-Section Cascades 171	
	5.5	Membrane Cascades 175	
	5.6	Hybrid Systems 176	
	5.7	Degrees of Freedom and Specifications for Countercurrent Cascades	177
	2	Stream Variables 178	
		Adiabatic or Nonadiabatic Equilibrium Stage 178	
		Single-Section, Countercurrent Cascade 179	
		Two-Section, Countercurrent Cascades 179	
		. ,	

References 185

Exercises 185

Summary 184

PART 2 SEPARATIONS BY PHASE ADDITION OR CREATION 191

Chapter 6	Dilute Absorption/Stripping Operations 193
•	6.0 Instructional Objectives 193
	Industrial Example 194
	6.1 Equipment 196
	6.2 General Design Considerations 200
	6.3 Graphical Equilibrium-Stage Method for Trayed Towers 201
	Minimum Absorbent Flow Rate 202
	Number of Equilibrium Stages 203
	6.4 Algebraic Method for Determining the Number of Equilibrium Stages 205
	6.5 Stage Efficiency 207
	Performance Data 208
	Empirical Correlations 208
	Semitheoretical Models 212
	Scale-up from Laboratory Data 214
	6.6 Tray Diameter, Pressure Drop, and Mass Transfer 215
	Tray Diameter 215
	High-Capacity Trays 218
	Tray Vapor Pressure Drop 219
	Mass-Transfer Coefficients and Transfer Units 220
	Weeping, Entrainment, and Downcomer Backup 222
	6.7 Rate-Based Method for Packed Columns 223
	6.8 Packed-Column Efficiency, Capacity, and Pressure Drop 228
	Liquid Holdup 228
	Column Diameter and Pressure Drop 233
	Mass-Transfer Efficiency 237
	6.9 Concentrated Solutions in Packed Columns 242
	Summary 244 References 244 Exercises 246
Chapter 7	Binary Distillation 252
	7.0 Instructional Objectives 252
	Industrial Example 253
	7.1 Equipment and Design Considerations 255
	7.2 McCabe-Thiele Graphical Equilibrium-Stage Method for Trayed Towers 255
	Rectifying Section 257
	Stripping Section 259
	Feed-Stage Considerations 259
•	Determination of Number of Equilibrium Stages and Feed-Stage Location 261
	Limiting Conditions 261
	Column Operating Pressure and Condenser Type 265
	Subcooled Reflux 266
	Reboiler Type 268
	Condenser and Reboiler Duties 269

Feed Preheat 270

ontonto	
Contents	

	Optimal Reflux Ratio 270	
	Large Number of Stages 271	
	Use of Murphree Efficiency 272	
	Multiple Feeds, Side Streams, and Open Steam 273	
7.3	Estimation of Stage Efficiency 275	
	Performance Data 275	
	Empirical Correlations 276	
	Semi-Theoretical Models 278	
	Scale-up from Laboratory Data 278	
7.4	Diameter of Trayed Towers and Reflux Drums 279	
	Reflux Drums 279	
7.5	Rate-Based Method for Packed Columns 280	
	HETP Method 280	
	HTU Method 281	
7.6	Ponchon-Savarit Graphical Equilibrium-Stage Method for Trayed Towers	283
Sumn	mary 284 References 285 Exercises 285	
Lian	uid Extraction of Ternary Systems 295	
8.0	Instructional Objectives 295	
0.0	Industrial Example 296	
8.1	Equipment 298	
0.1	Mixer-Settlers 299	
	Spray Columns 299	
	Packed Columns 300	
	Plate Columns 300	
	Columns with Mechanically Assisted Agitation 300	
8.2	General Design Considerations 305	
8.3	Hunter-Nash Graphical Equilibrium-Stage Method 309	
	Number of Equilibrium Stages 310	
	Minimum and Maximum Solvent-to-Feed Flow-Rate Ratios 313	
	Use of Right-Triangle Diagrams 315	
	Use of an Auxiliary Distribution Curve with a McCabe-Thiele Diagram	317
	Extract and Raffinate Reflux 318	
8.4	Maloney-Schubert Graphical Equilibrium-Stage Method 322	
8.5	Theory and Scale-Up of Extractor Performance 325	
	Mixer-Settler Units 325	
	Multicompartment Columns 332	
	Axial Dispersion 334	
Sumr	mary 337 References 338 Exercises 339	
Л //1	ticomponent Multistage Consentions	
	ticomponent, Multistage Separations:	
9.0	Approximate Methods 344 Instructional Objectives 344	
9.0 9.1	Instructional Objectives 344 Fenske-Underwood-Gilliland Method 344	
フ. エ	TOHSAC-UNGCI WOOD-UNHIANG IVICUIOU 344	

Selection of Two Key Components

Column Operating Pressure 347

345

Chapter 8

Chapter 9

 $Chapter \ 10$

Chapter 11

	Underwood Equations for Minimum Reflux 349
	Gilliland Correlation for Actual Reflux Ratio and Theoretical Stages 353
	Feed-Stage Location 355
	Distribution of Nonkey Components at Actual Reflux 356
9.2	Kremser Group Method 356
	Strippers 357
	Liquid-Liquid Extraction 358
Sumn	nary 360 References 360 Exercises 360
	ticomponent Absorption, Stripping, Distillation, Extraction 364
10.0	Instructional Objectives 364
10.1	Theoretical Model for an Equilibrium Stage 365
10.2	General Strategy of Mathematical Solution 366
10.3	Equation-Tearing Procedures 367
	Tridiagonal Matrix Algorithm 367
	Bubble-Point (BP) Method for Distillation 369
	Sum-Rates Method for Absorption and Stripping 374
	Isothermal Sum-Rates Method for Liquid-Liquid Extraction 378
10.4	Newton–Raphson Method 380
10.5	Inside-Out Method 388
	MESH Equations 389
	Rigorous and Complex Thermodynamic Property Models 390
	Approximate Thermodynamic Property Models 390
	Inside-Out Algorithm 391
Sumn	nary 393 References 394 Exercises 394
Supe	ercritical Extraction and Enhanced Distillation 401
11.0	Instructional Objectives 402
11.1	Use of Triangular Graphs 402
	Residue-Curve Maps 405
	Distillation-Curve Maps 410
	Product-Composition Regions at Total Reflux (Bow-Tie Regions) 411
11.2	Extractive Distillation 413
11.3	Salt Distillation 417
11.4	Pressure-Swing Distillation 419
11.5	Homogeneous Azeotropic Distillation 421
11.6	Heterogeneous Azeotropic Distillation 425 Multiplicity of Solutions 429
11.7	Reactive Distillation 432

439

Exercises

447

11.8 Supercritical-Fluid Extraction

References 445

Summary 445

Fenske Equation for Minimum Equilibrium Stages 347
Distribution of Nonkey Components at Total Reflux 349

Chapter	12	Distil	lation: Rate-Based Models 449
		12.0	Instructional Objectives 451
		12.1	Rate-Based Model 451
		12.2	Thermodynamic Properties and Transport-Rate Expressions 454
		12.3	Methods for Estimating Transport Coefficients and Interfacial Area 456
		12.4	Vapor and Liquid Flow Patterns 457
		12.5	Method of Calculation 457
			ChemSep Program 457
			RATEFRAC Program 461
		Summa	ary 462 References 463 Exercises 463
Chapter	13	Batch	Rectification 466
		13.0	Instructional Objectives 466
		13.1	Differential Distillation 466
		13.2	Binary Batch Rectification with Constant Reflux and Variable Distillate Composition 469
		13.3	Binary Batch Rectification with Constant Distillate Composition and Variable Reflux 470
		13.4	Batch Stripping and Complex Batch Distillation 471
		13.5	Effect of Liquid Holdup 472
		13.6	Shortcut Method for Multicomponent Batch Rectification with Constant Reflux 472
		13.7	Stage-by-Stage Methods for Multicomponent, Batch Rectification 474
•			Rigorous Model 474
			Rigorous Integration Method 476
			Rapid-Solution Method 480
		13.8	Optimal Control 482
			Slop Cuts 482
			Optimal Control by Variation of Reflux Ratio 484
		Summ	
		D 4444	
PART 3	SEPARAT	ION	BY BARRIERS AND SOLID AGENTS 491
Chapter	14	Sepa	ration by Membranes 493
		14.0	Instructional Objectives 493
			Industrial Example 494
		14.1	Membrane Materials 496
		14.2	Membrane Modules 499
		14.3	Transport in Membranes 502
			Porous Membranes 502
			Bulk Flow 503
			Liquid Diffusion in Pores 504
			Gas Diffusion 505
			Nonporous Membranes 505

Solution-Diffusion for Liquid Mixtures 506

Chapter 15

Module Flow Patterns 510
Cascades 512
External Mass-Transfer Resistances 513
Concentration Polarization and Fouling 515
14.4 Dialysis and Electrodialysis 516
Electrodialysis 518
14.5 Reverse Osmosis 521
14.6 Gas Permeation 525
14.7 Pervaporation 527
14.8 Ultrafiltration 531
Process Configurations 532
14.9 Microfiltration 540
Constant-Flux Operation 541
Constant-Pressure Operation 542
Combined Operation 542
Summary 543 References 544 Exercises 545
Sorption Processes: Chromatography, Adsorption,
and Ion Exchange 548
15.0 Instructional Objectives 549
Industrial Example 550
15.1 Sorbents 551
Adsorbents 551
Ion Exchangers 555
Sorbents for Chromatography 557
15.2 Equilibrium Considerations 559
Pure Gas Adsorption 559
Liquid Adsorption 563
Ion Exchange Equilibria 565
Equilibria in Chromatography 568
15.3 Kinetic and Transport Considerations 568
External Transport 568
Internal Transport 571
Mass Transfer in Ion Exchange and Chromatography 572
15.4 Sorption Systems 573
Adsorption 573
Ion Exchange 576
Chromatography 577
Slurry Adsorption (Contact Filtration) 577
Fixed-Bed Adsorption (Percolation) 580
Thermal-Swing Adsorption 587
Pressure-Swing Adsorption 590
Continuous, Countercurrent Adsorption Systems 596
Simulated-Moving-Bed Systems 598
Ion-Exchange Cycle 607
Chromatographic Separations 608
Summary 612 References 613 Exercises 615

Solution-Diffusion for Gas Mixtures 507

SEPARATIONS THAT INVOLVE A SOLID PHASE 621 PART 4

Chapter 16	Solid-Liquid Extraction 623
•	16.0 Instructional Objectives 623
	Industrial Example 623
	16.1 Equipment for Leaching 624
	Batch Extractors 625
	Espresso Machine 626
	Continuous Extractors 627
	Continuous, Countercurrent Washing 629
	16.2 Equilibrium-Stage Model for Leaching and Washing 631
	McCabe-Smith Algebraic Method 633
	Variable Underflow 635
	16.3 Rate-Based Model for Leaching 637
•	Food Processing 637
	Mineral Processing 639
	Summary 641 References 641 Exercises 642
•	
Chanton 17	Crystallization 644
Chapter 17	Crystallization 644
	17.0 Instructional Objectives 644
	Industrial Example 645
	17.1 Crystal Geometry 648
	Crystal-Size Distributions 648 Differential Screen Analysis 651
	Differential Screen Analysis 651 Cumulative Screen Analysis 651
	Surface-Mean Diameter 652
	Mass-Mean Diameter 652
	Arithmetic-Mean Diameter 652
	Volume-Mean Diameter 653
	17.2 Thermodynamic Considerations 653
	Solubility and Material Balances 653
	Enthalpy Balances 656
	17.3 Kinetic and Transport Considerations 658
	Supersaturation 658
	Nucleation 659
	Crystal Growth 660
	17.4 Equipment for Solution Crystallization 663
	Circulating, Batch Crystallizers 664
	Continuous, Cooling Crystallizers 665
	Continuous, Vacuum, Evaporating Crystallizers 665
	17.5 The MSMPR Crystallization Model 666
	Crystal-Population Balance 667
	17.6 Precipitation 671
	17.7 Melt Crystallization 673
	Equipment for Melt Crystallization 674

17.8 Zone Melting 677

	17.9	Desublimation 6/9
		Desublimation in a Heat Exchanger 680
	17.10	Evaporation 681
		Evaporator Model 683
		Multiple-Effect Evaporator Systems 685
		Overall Heat-Transfer Coefficients in Evaporators 688
	Summ	ary 688 References 689 Exercises 690
	Dryin	ng 695
	18.0	Instructional Objectives 695
		Industrial Example 696
	18.1	Drying Equipment 696
		Batch Operation 697
		Continuous Operation 699
	18.2	Psychrometry 711
		Wet-Bulb Temperature 713
		Adiabatic-Saturation Temperature 715
		Moisture-Evaporation Temperature 716
	18.3	Equilibrium-Moisture Content of Solids 719
٠	18.4	Drying Periods 721
		Constant-Rate Drying Period 722
		Falling-Rate Drying Period 724
	18.5	Dryer Models 734
		Material and Energy Balances for Direct-Heat Dryers 734
		Belt Dryer with Through-Circulation 735
		Direct-Heat Rotary Dryer 738
		Fluidized-Bed Dryer 739
	Summ	ary 742 References 742 Exercises 743

Index I1

Chapter 18