Introduction to Chemical Processes Principles, Analysis, Synthesis Regina M. Murphy

McGRAW-HILL INTERNATIONAL EDITION

Contents

Preface

	t of Nomenclat t of Important		xxvi xxix			
CHAPTER	Converting Useful Pro	the Earth's Resources into)			
1.1	Introduction		2			
1.2	Raw Materials		3			
1.3	Balanced Chemica	l Reaction Equations	6			
	Example 1.1	Balanced Chemical Reaction Equation: Nitric Acid Synthesis	U			
	Example 1.2	Balanced Chemical Reaction Equations: Adipic Acid Synthesis				
1.4	Generation-Consumption Analysis					
	Example 1.3	Generation-Consumption Analysis: The LeBlanc Process				
	Example 1.4	Generation-Consumption Analysis: The Solvay Process				
	Example 1.5	Generation-Consumption Analysis: Ammonia Synthesis				
1.5	A First Look at Material Balances and					
	Process Economics	_	18			
		and Molar Mass	19			
	1.5.2 Atom Econor	•	20			
	Example 1.6	Atom Economy: LeBlanc versus Solvay				
	Example 1.7	Atom Economy: Improved Synthesis of 4-A				
	1.5.3 Process Econ	•	24			
	Example 1.8	Process Economy: The Solvay Process	26			
	1.5.4 Process Capacities and Product Values Case Study: Six-Carbon Chemistry					
	Summary	on Chemistry	27 37			
	ChemiStory: Chang	ing Salt into Soan	39			
	Quick Quiz Answer		40			
		ommended Readings	41			
	Chapter 1 Problems					

CHAPTER	244425B170B	rocess Flo alances	ws: Variables, Diagrams,	57
2.1	Introd	luction		58
2.2	Proce	ss Variables		59
	2.2.1	A Brief Review	of Dimensions and Units	59
	2.2.2	Mass, Moles, a	and Composition	61
	2.2.3	Temperature a	and Pressure	63
		•	ity, and Concentration	64
	2.2.5	Flowrates		66
2.3		iical Process F		67
		Input-Output I		68
		Block Flow Dia	-	69
			Diagrams (PFD)	71
		Modes of Prod		74
2.4		ss Flow Calcu	lations	75
		Definitions Material Balan		76 78
			re Equations Procedure for Process	/0
	2.4.3.	Flow Calculati		81
	2.4.4.		for Process Flow Calculations	82
		A Plethora of		84
		Example 2.1	Mixers: Battery Acid Production	
		Example 2.2	Reactors: Ammonia Synthesis	
		Example 2.3	Separators: Fruit Juice Concentration	
		Example 2.4	Splitters: Fruit Juice Processing	
		Example 2.5	Elements as Components: Ibuprofen Analysis	
		Example 2.6	Separation with Accumulation: Air Drying	
		Example 2.7	Reaction with Accumulation: Light from a Chip	
2.5	D	£ Tus salsas	· ·	104
2.5	Degre	ee of Freedom Example 2.8	DOF Analysis: Ammonia Synthesis	104
		Example 2.9	DOF Analysis: Animonia Synthesis DOF Analysis: Light from a Chip	
		Example 2.10	DOF Analysis: Battery Acid Production	
		Example 2.11	DOF Analysis: Eat Your Greens!	
2.6	Proce	-	llations with Multiple	112
		ss Units		112
	11000	Example 2.12	Multiple Process Units: Toxin Accumulation	
		Example 2.13	Multiple Process Units: Adipic	
		•	Acid Manufacture from Glucose	
	2.6.1	Synthesizing	Block Flow Diagrams	121
		Example 2.14	Synthesizing Block Flow Diagrams:	
			Adipic Acid Process	

	2.6.2 2.6.3	The Art of Ap	proximating edom Analysis for Block Flow	124
	4,0,0	-	h Multiple Process Units	125
		Example 2.15	DOF Analysis: Adipic Acid Production	123
	Case	-	n of a Greener Process	127
	Sumn	•	n of a Greener Hocess	136
		•	and the Guns of August	137
		Quiz Answers		141
			ommended Readings	141
	Спарі	er 2 Problems		142
			at a second of the second of t	
CHAPTER			cal Analysis of Material	
- 1011000000000000000000000000000000000	В	alance Eq	uations and Process	
	F	low Sheet	s	169
3.1	Introd	duction		170
3.2	The N	Naterial Balani	ce Equation—Again	170
J.L	3.2.1		of Mass and the Material	170
	3.2.1	Balance Equat		171
		•		171
	3.2.2	Example 3.1	Decomposition Reactions s of the Differential Material	
	3.2.2			1.70
		Balance Equat		176
		Example 3.2	Mass Balances: Sugar Dissolution	
		Example 3.3	Mass Balances: Glucose Consumption	
			in a Fermentor	
		Example 3.4	Mole Balances: Manufacture of Urea	
		Example 3.5	Mole Balances: Urea Manufacture	
		_	from Cheaper Reactants	
	3.2.3		edom Analysis	182
		Example 3.6	DOF Analysis: Urea Synthesis from	
			Cheaper Reactants	
		Example 3.7	Differential Material Balance Equation	
			with Multiple Chemical Reactions	
		•	at Steady State: Benzene into Catechol	
	3.2.4	General Form	s of the Integral Material	
		Balance Equat		186
		Example 3.8	Integral Equation: Blending and Shipping	
		Example 3.9	Integral Equation with Unsteady Flow:	
		_	Jammin' with Cherries	
	3.2.5	A Few More P		193
		Example 3.10	Integral Equation with Unsteady Flow and	·
		•	Chemical Reaction: Controlled Drug Release	

		Example 3.11	Differential Equation with Unsteady Flow and Chemical Reaction: Glucose	
			Utilization in a Fermentor	
3.3	Linear	r Equations at	nd Chemical Reactions	
		onal Section)		200
	3.3.1	Linear Equation	ons, Linear Independence,	
		Solution Exist	ence, and Solution Uniqueness	201
	3.3.2	Using Matrice	s to Balance Chemical Reactions	204
		Example 3.12	Balancing Chemical Equations with	
		•	Matrix Math: Adipic Acid	
	3.3.3		s in Generation-Consumption Analysis	207
		Example 3.13	Generation-Consumption Analysis Using	
			Matrix Math: Nitric Acid Synthesis	
	3.3.4		s to Find Linearly Independent	
		Chemical Equ	ations	210
3.4	Linear	r Models of Pi	rocess Flow Sheets	
	(Optio	onal Section)		213
	3.4.1	Linear Models	of Single Process Units	214
		Example 3.14	Linear Model of a Mixer: Sweet Mix	
		Example 3.15	Linear Model of a Splitter: Sweet Split	
		Example 3.16	Linear Model of a Reactor:	
		!	Glucose-Fructose Isomerization	
		Example 3.17	-	
		1	Reactions	
		Example 3.18	Linear Model of a Separator: Sweet Solution	
	3.4.2	Process Topol		226
		Example 3.19	Linear Models with Multiple Process	
			Units and Recycle: Taking an old	
	C C	N	Plant out of Mothballs	00.4
		-	ture of Nylon-6,6	234
	Sumn	•	themselve and Heatens	244 246
			thbrushes and Hosiery	249
•		Quiz Answers		249
		er 3 Problems	nmended Reading	249
	Chapt	ei 3 i lobieilis		249
CHAPTER	22.20.20.20.20.20.	-	of Reactor Flow Sheets	
			on of Reactor Process	200
	C	Conditions		263
4.1	Introd	duction		264
	4.1.1		nportant Chemical Reactions	264
	4.1.2	-	Selecting Chemical Reactions	266
			-	

4.1.3		A Brief Review: Generation-Consumption Analysis and Atom Economy		
		Example 4.1	Generation-Consumption and Atom	
		*	Economy: Improved Synthesis of Ibuprofen	
	4.1.4	Reactor Design		269
4.2	React	or Material Ba	lance Equations	271
	4.2.1		Known Reaction Stoichiometry	271
		Example 4.2	Continuous-Flow Steady-State Reactor with Known Stoichiometry: Combustion of Natural Gas	
		Example 4.3	Batch Reactor with Known Reaction Stoichiometry: Ibuprofen Synthesis	
		Example 4.4	Semibatch Reactor with Known Reaction Stoichiometry: Ibuprofen Synthesis	
	4.2.2	Reactors with	Unknown Reaction Stoichiometry	278
		Example 4.5	Material Balance Equation with Elements: Combustion of Natural Gas	
		Example 4.6	Mass Rates of Reaction: Microbial Degradation of Soil Contaminants	
4.3	Strear	n Compositio	n and System Performance	
	Speci	fications for R	eactors	282
	4.3.1	Stream Comp	osition Specification:	
		Excess and Li	miting Reactants	284
		Example 4.7	Excess Reactants: A Badly	
			Maintained Furnace	
	4.3.2	•	mance Specification:	
		Fractional Cor		287
		Example 4.8	Fractional Conversion: Ammonia Synthesis	
		Example 4.9	Effect of Conversion on Reactor Flows: Ammonia Synthesis	
	4.3.3		nversion and Its Effect on Reactor	
			nthesis: Recycle	290
		Example 4.10	Low Conversion and Recycle: Ammonia Synthesis	
	4.3.4	Fractional Cor	rversion and Its Effect on Reactor	
		Flow Sheet Sy	nthesis: Recycle and Purge	294
		Example 4.11	Recycle with Purge: Ammonia Synthesis	
	4.3.5		mance Specifications: Selectivity	200
		and Yield Example 4.12	Selectivity and Yield Definitions: Acetaldehyde Synthesis	298

		Example 4.13	Using Selectivity in Process Flow Calculations: Acetaldehyde Synthesis	
4.4	Why f	Reactors Aren'	Perfect: Chemical Equilibrium	
		hemical Kineti		304
	4.4.1	The Chemical	Reaction Equilibrium Constant K_a	304
		Example 4.14	Deriving Equations for K_a : Three Cases	
	4.4.2	Calculating K_a		307
		Example 4.15	Calculating K_a : Ethyl Acetate Synthesis	
		Example 4.16	Chemical Equilibrium Considerations in	
		•	Selection of Reaction Pathway: Safer	
	4.4,3	Chemical Reac	Routes to Dimethyl Carbonate tion Equilibrium and Reactor	
	7.7.3	Performance	tion equilibrium and Reactor	314
		Example 4.17	Reactor Performance and K_a . Ammonia	314
		Dimirp v	Synthesis	
		Example 4.18	Equilibrium Conversion as a Function of	
		•	T and P: Ammonia Synthesis	
		Example 4.19	Multiple Chemical Equilibria and Reactor	
			T: NOx Formation.	
	4.4.4		tion Kinetics and Reactor Performance	
		(Optional Secti		323
		Example 4.20	Reaction Kinetics and Reactor Performance:	;
	Cooo	tudu Uridaaaa	Vegetable Processing	207
	Summ	Study: Hydrogen	and Methanol	327 335
		iStory: Quit Bu	gging Me	337
		Quiz Answers	genig we	340
			mmended Readings	340
		er 4 Problems		341
		š		
CHAPTER	5 S	election of	Separation Technologies	
	a	nd Synthes	sis of Separation	
		low Sheets		365
5.1		luction		366
	5,1.1		rty Differences: The Basis	
		for All Separati		366
		Example 5.1	Physical Property Differences: Separating	
	5.1.2	Mixtures and P	Salt From Sugar	267
	5.1.3		riases of Separation Technologies	367 369
	5.1.4		Selecting and Sequencing	203
		Separation Tecl		373
		,	J	

		Example 5.2	Selection of Separation Technology:	
		Example 5.3	Separating Benzene from Toluene Selection of Separation Technology:	
		Example 5.4	Cleaning up Off-Gas from a Printing Press Sequencing of Separation Technologies: Aromatics and Acid	
5.2	Separ	ator Material I	Balance Equations	379
		Example 5.5	Semibatch Mechanical Separation: Filtration of Beer Solids	
		Example 5.6	Rate-Based Separation: Membranes for Kidney Dialysis	
5.3	Strear	n Compositio	n and System Performance	
	Specif	fications for S	eparators	386
		Example 5.7	Defining Separator Performance Specifications: Separating Benzene from Toluene	
		Example 5.8	Purity and Recovery Specifications in Process Flow Calculations: Separating Benzene and Toluene	
		Example 5.9	Fractional Recovery in Rate-Based	
		Example 5.9	Separations: Membranes for	
			Kidney Dialysis	
	5.3.1	Recycling in Se	eparation Flow Sheets	394
		Example 5.10	Separation with Recycle: Separating Sugar Isomers	551
5.4	Why S	Separators Are	n't Perfect: Entrainment	
		quilibrium	No Fred Endamnent	398
	5.4.1	•	ncomplete Mechanical Separation	398
		Example 5.11	Accounting for Entrainment: Coffee Making	
	5.4.2	Phase Equilibri	um and the Equilibrium Stage	401
5.5	An Ex	hausting (but	Not Exhaustive) Look at	
	Phase	Equilibrium		403
		The Gibbs Pha		404
	5.5.2	- '	nent Phase Equilibrium	405
	5.5.3		nt Phase Equilibrium	408
		Example 5.12	Using Raoult's Law: Dew Point and	
			Bubble Point Temperatures of	
			Hexane-Heptane Mixtures	
5.6		orium-Based S	eparations	423
	5.6.1	Crystallization		425
		Example 5.13	Process Flow Calculations with	
			Liquid-Solid Equilibrium Data:	
			Potassium Nitrate Crystallization	

	Example 5.14	Entrainment Effects in Equilibrium-Based	
	1	Separations: Separation of Benzene and	
		Naphthalene by Crystallization	
5.6.2	Evaporation, C	Condensation, and Equilibrium Flash	429
	Example 5.15	Process Flow Calculations with	
		Raoult's Law: Dehumidification of	
	*	Air by Condensation	
	Example 5.16	Process Flow Calculations with	
	1	Raoult's Law: Equilibrium Flash of	
_		a Hexane/Heptane Mixture	
	Example 5.17	Vapor-Liquid Separations with Nonideal	
		Solutions: Equilibrium Flash Separation	
		of Ethanol-Water Mixture	
5.6.3	Distillation (O		434
	Example 5.18	The Power of Multistaging: Distillation	
	•	versus Equilibrium Flash for	
		Hexane/Heptane Separation	
5.6.4	Absorption, A	dsorption, and Extraction	437
	Example 5.19	Process Flow Calculations Using	
		Gas-Liquid Equilibrium Data: Cleaning	
	4	up Dirty Air by Absorption	
	Example 5.20	Process Flow Calculations Using	
	*;	Adsorption Isotherms: Monoclonal	
		Antibody Purification	
	Example 5.21	Process Flow Calculations Using	
	•	Liquid-Liquid Distribution Coefficients:	
		Cleanup of Wastewater Stream by	
		Solvent Extraction	
	Example 5.22	Process Flow Calculations Using Triangular	
	_	Phase Diagrams: Separating Acetic Acid	
	ý	from Water	
5.6.5	Multistaged S	eparations Using Material	
		gents (Optional)	446
	Example 5.23	The Power of Multistaging: Recovery	
		of Acetic Acid from Wastewater	
Case S	Study: Scrubbin	g Sour Gas	451
Sumn			457
	iStory: How S	weet It Is	458
	Quiz Answer		461
		ommended Readings	462
	er 5 Problems	-	462

CHAPTER			ergy Calculations and of Safe and Efficient	
		nergy Flo		495
6.1	Introd	duction		496
	6.1.1	Energy Source		496
	6.1.2	and Cooling	bution: Electricity, Heating Fluids,	400
	6.1.3		fer Equipment	499 500
	6.1.4		w of Energy-Related Dimensions and Units	502
6.2	Proce	ss Energy Ca	lculations: The Basics	504
	6.2.1		alance Equation	504
	6.2.2	System Energ	gy, Energy Flows, Specific Energy	505
6.3			on Energy: Energy Data and Model	
	Equat		£ 5	507
	6.3.1	Example 6.1	f Energy: Kinetic and Potential	508
9		Example 6.1	Kinetic and Potential Energy: Toddler Trouble Change in Potential Energy: Snow Melt	28
		Example 6.3	Change in Kinetic Energy of a Stream:	
		1	Thomas Edison or Rube Goldberg?	
	6.3.2	A Third Kind	of Energy and a Convenience	
		Function: Into	ernal Energy and Enthalpy	511
	6.3.3	Using Tables	and Graphs to Find \widehat{U} and \widehat{H}	512
		Example 6.4	Using Steam Tables to Find \widehat{H} : Several Cases	
		Example 6.5	Using Steam Tables: Pumping Water,	
		m 1	Compressing Steam	
		Example 6.6	Comparing Kinetic, Potential, and	
		Example 6.7	Internal Energy: Frequent Flyer	
		Example 0.7	Using Enthalpy-Composition Graphs: Ammonia-Water Mixtures	
	6.3.4	Usina Model	Equations to Find \widehat{U} and \widehat{H}	521
		Example 6.8	Enthalpy Calculations: Enthalpy of	
		-	Vaporization of Water at High Pressure	
•		Example 6.9	Enthalpy Calculations: Enthalpy of	
			Reaction at High Temperature	
		Minisummary		535
6.4	Energ	y Flows: Hea	t and Work	536
6.5	The E	nergy Balanc	e Equation—Again	538
6.6	Proce	ss Energy Ca		540
	6.6.1		Procedure for Process Energy	
		Calculations		540
			for Process Energy Calculations	541
	6.6.3	A Plethora of	rropiems	542

	l	ndex		I-1
	C	Glossary		681
APPENDIX	c A	Answers to	Select Problems	673
APPENDIX		Physical Pr		641
APPENDIX				
DDE+1515/	, R	Aathomatic	cal Methods	621
		ter 6 Problems		596
			ommended Readings	595
\$.		Quiz Answers		595
•		iStory: Get the	Lead Out!	591
	Sumn			589
	Case S		Management in a Chemical Reactor	584
	5.7.7	Example 6.23	Estimating Explosive Potential: Trinitrotolu	
	6.7.4	Chemical Ener	rgy and Chemical Safety: Explosions	579
		Example 6.22	Hydrogen Fuel Cells	
		Example 6 22	Heat Engine Analysis Converting Reaction Energy to Work:	
		Example 6.21	Converting Reaction Energy to Work:	
		T 1 (2)	Furnace Efficiency	
		Example 6.20	Converting Reaction Energy to Heat:	
	6.7.3		rsion Processes	567
			Methanol Vapor	
		Example 6.19	Heat Exchanger Sizing: Steam Heating of	
	6.7.2	Heat and the S	Synthesis of Heat Exchange Networks	563
		!	Sizing a Pump	
	J,	Example 6.18	The Engineering Bernoulli Equation:	
	6.7.1		Engineering Bernoulli Equation	560
6.7	A Prod	cess Eneray Sa	ampler (Optional Section)	560
			Batch of Sterilized Broth	
		Example 6.17	Unsteady-State Heat Loss: Cooling a	
		Example 0.10	Synthesis of Acetaldehyde	
		Example 6.16	Energy Balance with Multiple Reactions:	
		Example 6.15	Energy Balance with Chemical Reaction: Adiabatic Flame Temperature	
		D 1 6 1 5	Separation of Hexane and Heptane	
		Example 6.14	Energy Balance with Equilibrium Flash:	
		T.	Mel and Dan's Lemonade Stand	
		Example 6.13	Simultaneous Energy and Material Balances	:
			Caustic Tank Safety	
		Example 6.12	Temperature Change with Dissolution:	
		Example 6.11	System: Unplugging the Frozen Pipes	•
		Example 6.11	Integral Energy Balance with a Closed	o ui ii
		Example 6.10	Potential Energy into Work: Water over the l	Dam