

Theory and Computation

Fifth Edition

Updated with SAP2000®

Mario Paz William Leigh

CONTENTS

PREFACE TO THE FIFTH EDITION			
PREFACE TO THE FIRST EDITION			
	STRUCTURES MODELED AS A SINGLE-DEGREE-OF-FREEDOM SYSTEM	1	
1 UND	AMPED SINGLE-DEGREE-OF-FREEDOM SYSTEM	3	
1.3 1.4 1.5 1.6 1.7 1.8 1.9	Newton's Law of Motion Free Body Diagram D' Alembert's Principle	4 5 7 8 9 10 12 14 16 22 23	
2 DAN	IPED SINGLE-DEGREE-OF-FREEDOM SYSTEM	31	
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Viscous Damping Equation of Motion Critically Damped System Overdamped System Underdamped System Logarithmic Decrement Summary Problems	31 32 33 34 35 37 44 45	

3	RESPONSE OF ONE-DEGREE-OF-FREEDOM SYSTEM TO HARMONIC LOADING				
		Harmonic Excitation: Undamped System	49		
		Harmonic Excitation: Damped System	52		
		Evaluation of Damping at Resonance	60		
		Bandwidth Method (Half-Power) to Evaluate Damping	61		
		Energy Dissipated by Viscous Damping	63		
		Equivalent Viscous Damping	64		
		Response to Support Motion	67		
		Force Transmitted to the Foundation	75		
		Seismic Instruments	78		
		Response of One-Degree-of-Freedom System			
		to Harmonic Loading Using SAP2000	80		
		Summary	92		
		Analytical Problem	94		
	3.13	Problems	96		
4	RESP	ONSE TO GENERAL DYNAMIC LOADING	101		
	4.1	Duhamel's Integral-Undamped System	101		
		Duhamel's Integra1-Damped System	110		
		Response by Direct Integration	110		
		Solution of the Equation of Motion	112		
	4.5	Program 2-Response by Direct Integration	117		
		Program 3-Response to Impulsive Excitation	120		
	4.7	Response to General Dynamic Loading Using SAP2000	126		
		Summary	137		
		Analytical Problems	137		
	4.10	Problems	141		
5	RES	SPONSE SPECTRA	149		
	5.1	Construction of Response Spectrum	149		
	5.2	Response Spectrum for Support Excitation	153		
	5.3	Tripartite Response Spectra	154		
	5.4	Response Spectra for Elastic Design	157		
	5.5	Influence of Local Soil Conditions	161		
	5.6	Response Spectra for Inelastic Systems	163		
	5.7	Response Spectra for Inelastic Design	166		
	5.8	Program 6-Seismic Response Spectra	171		
	5.9	Summary	174		
	5.10	Problems	174		

6	NO	NLINEAR STRUCTURAL RESPONSE	179
	6.1	Nonlinear Single Degree-of-Freedom Model	179
	6.2	Integration of the Nonlinear Equation of Motion	181
	6.3	Constant Acceleration Method	182
	6.4		184
	6.5		187
	6.6		188
	6.7	Algorithm for the Step-by-Step Solution for Elastoplastic Single-Degree-of-Freedom System	190
	6.8	Program 5-Response for Elastoplastic Behavior	196
	6.9		198
) Problems	198
PA	RT II	STRUCTURES MODELED AS SHEAR BUILDINGS	203
7	FR	EE VIBRATION OF A SHEAR BUILDING	205
	7.1	Stiffness Equations for the Shear Building	205
	7.2	Natural Frequencies and Normal Modes	209
		Orthogonality Property of the Normal Modes	214
		Rayleigh's Quotient	218
		Program 8-Natural Frequencies and Normal Modes	220
		Free Vibration of a Shear Building Using SAP2000	221
		Summary	225
	7.8	Problems	227
8	FO	RCED MOTION OF SHEAR BUILDING	231
	8.1	Modal Superposition Method	231
	8.2	Response of a Shear Building to Base Motion	238
	8.3	Program 9-Response by Modal Superposition	244
		Harmonic Forced Excitation	246
		Program 10-Harmonic Response	251
		Forced Motion Using SAP2000	254
		Combining Maximum Values of Modal Response	265
	8.8	Summary	266
	8.9	Problems	267
9	RE	DUCTION OF DYNAMIC MATRICES	271
	9.1	Static Condensation	271
	9.2	Static Condensation Applied to Dynamic Problems	275
	9.3	Dynamic Condensation	285
	9.4	Modified Dynamic Condensation	293
	9.5	Program 12-Reduction of the Dynamic Problem	296
	9.6	Summary	299
	9.7	Problems	299

PART III FRAMED STRUCTURES MODELED AS DISCRETE MULTI-DEGREE-OF- FREEDOM SYSTEMS 30				
10	DYNAMIC ANALYSIS OF BEAMS	305		
	10.1 Shape Functions for a Beam Segment	305		
	10.2 System Stiffness Matrix	311		
	10.3 Inertial Properties-Lumped Mass	314		
	10.4 Inertial Properties-Consistent Mass	315		
	10.5 Damping Properties	320		
	10.6 External Loads	320		
	10.7 Geometric Stiffness	322		
	10.8 Equations of Motion	326		
	10.9 Element Forces at Nodal Coordinates	333		
	10.10 Program 13-Modeling Structures as Beams	336		
	10.11 Dynamic Analysis of Beams Using SAP2000 10.12 Summary	339 347		
	10.12 Summary 10.13 Problems	347 347		
	10.15 Floblems	347		
11	DYNAMIC ANALYSIS OF PLANE FRAMES	353		
	11.1 Element Stiffness Matrix for Axial Effects	353		
	11.2 Element Mass Matrix for Axial Effects	355		
	11.3 Coordinate Transformation	359		
	11.4 Program 14-Modeling Structures as Plane Frames	367		
	11.5 Dynamic Analysis of Frames Using SAP2000	370		
	11.6 Summary	376		
	11.7 Problems	376		
12	DYNAMIC ANALYSIS OF GRID FRAMES	381		
	12.1 Local and Global Coordinate Systems	381		
	12.2 Torsional Effects	382		
	12.3 Stiffness Matrix for a Grid Element	384		
	12.4 Consistent Mass Matrix for a Grid Element	385		
	12.5 Lumped Mass Matrix for a Grid Element	385		
	12.6 Transformation of Coordinates	386		
	12.7 Program 15-Modeling Structures as Grid Frames	392		
	12.8 Dynamic Analysis of Grid Frames Using SAP2000	395		
	12.9 Summary 12.10 Problems	403		
	12.10 Problems	403		
13	DYNAMIC ANALYSIS OFTHREE-DIMENSIONAL FRAMES	407		
	13.1 Element Stiffness Matrix	407		
	13.2 Element Mass Matrix	409		
	13.3 Element Damping Matrix	410		

	13.4	Transformation of Coordinates	410
	13.5	Differential Equation of Motion	414
	13.6	Dynamic Response	415
	13.7	Program 16-Modeling Structures as Space Frames	415
	13.8	Dynamic Response of Three-Dimensional Frames	
		Using SAP2000	418
	13.9	Summary	426
	13.10	Problems	427
14	DYN.	AMIC ANALYSIS OF TRUSSES	429
	14.1	Stiffness and Mass Matrices for the Plane Truss	429
	14.2	Transformation of Coordinates	432
	14.3	Program 17-Modeling Structures as Plane Trusses	438
	14.4	Stiffness and Mass Matrices for Space Trusses	441
	14.5	Equation of Motion for Space Trusses	443
	14.6	Program 18-Modeling Structures as Space Trusses	444
	14.7	Dynamic Analysis of Trusses Using SAP2000	446
	14.8	Summary	459
	14.9	Problems	459
15		AMIC ANALYSIS OF STRUCTURES USING THE FINITE	400
	ELER	MENT METHOD	463
	15.1	Plane Elasticity Problems	464
		15.1.1 Triangular Plate Element for Plane Elasticity problems	465
		15.1.2 SAP2000 for Plane Elasticity Problem	472
	15.2	Plate Bending	477
		15.2.1 Rectangular Element for Plate Bending	478
	150	15.2.2 SAP2000 for Plate Bending and Shell Problems	484
	15.3	Summary	491
	15.4	Problems	493
16	TIME	HISTORY RESPONSE OF MULTIDEGREE-OF-FREEDOM	
	SYS	TEMS	495
	16.1	Incremental Equations of Motion	495
	16.2	The Wilson- θ Method	497
	16.3		
		Wilson- θ Method	500
		16.3.1 Initialization	500
	• • •	16.3.2 For Each Time Step	500
	16.4	Program 19-Response by Step Integration	505
	16.5	The Newmark Beta Method	506
	16.6 16.7	Elastoplastic Behavior of Framed Structures	508
	16.7	Member Stiffness Matrix Member Mass Matrix	508
	16.9	Rotation of Plastic Hinges	511 513
	10.9	voration of triagne timizes	213

		Calculation of Member Ductility Ratio Time-History Response of Multidegree-of-Freedom Systems Usin	514
		SAP2000	515
		Summary	521
	16.13	Problems	522
PART IV STRUCTURES MODELED WITH DISTRIBUTED PROPERTIES			525
17		AMIC ANALYSIS OF SYSTEMS WITH DISTRIBUTED OPERTIES	527
	FIXC	FERTIES	527
	17.1	Flexural Vibration of Uniform Beams	527
	17.2	,	529
	17.3	Natural Frequencies and Mode Shapes for Uniform Beams	531
		17.3.1 Both Ends Simply Supported	531
		17.3.2 Both Ends Free (Free Beam) 17.3.3 Both Ends Fixed	534
		17.3.4 One End Fixed and the other End Free	535
		(Cantilever Beam)	537
		17.3.5 One End Fixed and the other End Simply Supported	538
	17.4	Orthogonality Condition Between Normal Modes	540
	17.5	Forced Vibration of Beams	542
	17.6	Dynamic Stresses in Beams	547
	17.7	Summary	549
	17.8	Problems	550
18	DIS	CRETIZATION OF CONTINUOUS SYSTEMS	553
	18.1	Dynamic Matrix for Flexural Effects	554
	18.2	Dynamic Matrix for Axial Effects	556
	18.3	Dynamic Matrix for Torsional Effects	558
	18.4	Beam Flexure Including Axial-Force Effect	560
	18.5	Power Series Expansion of the Dynamic Matrix for Flexural	
		Effects	563
	18.6	Power Series Expansion of the Dynamic Matrix for Axial and for	~ ~ 4
	10.7	Torsional Effects	564
	18.7	Power Series Expansion of the Dynamic Matrix	E C E
	18.8	Including the Effects of Axial Forces Summary	565 566
ΡΔΙ	RT V	SPECIAL TOPICS: Fourier Analysis, Evaluation of	
יאו	√1 ¥	Absolute Damping, Generalized Coordinates	567
19	FOU	RIER ANALYSIS AND RESPONSE IN	
		FREQUENCY DOMAIN	569
	19.1	Fourier Analysis	569

	_		
	19.2	Response to a Loading Represented by Fourier Series	570
	19.3	Fourier Coefficients for Piecewise Linear Functions	573
	19.4	Exponential Form of Fourier Series	574
	19.5	Discrete Fourier Analysis	575
	19.6		578
	19.7		580
	19.8		586
	19.9	•	586
	19.9	Toblenis	300
20	FV4	ALUATION OF ABSOLUTE DAMPING FROM	
		DAL DAMPING RATIOS	593
	20.1	Equations for Damped Shear Building	593
	20.2	Uncoupled Damped Equations	595
		Conditions for Damping Uncoupling	596
		Program 11-Absolute Damping From Modal Damping Ratios	602
	20.5		604
		Problems	604
21	GEN	NERALIZED COORDINATES AND RAYLEIGH'S METHOD	607
	21.1	Principle of Virtual Work	607
	21.2		609
	21.3		007
	21.5	Distributed Elasticity	612
	21.4	•	617
	21.5		
		1	621
	21.6		624
	21.7	• •	628
	21.8		636
	21.9		639
		Summary	642
	21.11	Problems	643
PA	RT VI	RANDOM VIBRATION	649
22	RA	NDOM VIBRATION	651
	00.1	Civil ded Description CD 1 D 2	
	22.1	Statistical Description of Random Functions	652
	22.2	Probability Density Function	654
	22.3	The Normal Distribution	656
	22.4	The Rayleigh Distribution	657
	22.5	Correlation	659
	22.6	The Fourier Transform	663
	22.7	Spectral Analysis	665
	22.8	Spectral Density Function	669
	22.9	Narrow-Band and Wide-Band Random processes	671

	22.10	4		
	22,11		legree-of-Freedom System e to Random Excitation: Multiple-Degree-of-Freedom	675
	24,11	System	to Random Excitation, withtiple-Degree-of-Freedom	681
		22.11.1	Relationship Between Complex Frequency Response	
			and Unit Impulse Response	681
		22.11.2	Response to Random Excitation:	(02
		22.11.3	Two-degree-of-freedom System Response to Random Excitation:	683
		22.11.3	N Degree of Freedom System	688
	22.12	Summar		691
	22.13	Problem		692
PAI	RT VII	EARTHQ	UAKE ENGINEERING	697
23	UNI	IFORM B	UILDING CODE 1997: EQUIVALENT LATERAL	
		ORCE M		699
	23.1		ke Ground Motion	700
	23.2		nt Lateral Force Method	703
	23.3 23.4	-	ke-Resistant Design Methods Zone Factor	703 703
	23.5	Base She		703
	23.6		ion of Lateral Seismic Forces	711
	23.7			711
	23.8	Horizonta	al Torsional Moment	712
	23.9		ing Moment	713
			Effect $(P-\Delta)$	713
			ncy/Reliability Factor ρ	715
			ft Limitation	715
			m Design Forces ke Load Effect	716 717
		Irregular		717
		Summary		726
		Problems		726
24	UNIF	ORM BU	ILDING CODE 1997: DYNAMIC METHOD	731
	24.1	Modal	Seismic Response of Buildings	731
		24.1.1	Modal Equation and Participation Factor	732
		24.1.2	Modal Shear Force	733
		24.1.3	Effective Modal Weight	734
		24.1.4 24.1.5	Modal Lateral Forces	735 735
		24.1.5	Modal Displacements Modal Drift	736
		24.1.0	Modal Overturning Moment	736
		24.1.8	Modal Torsional Moment	737
	24.2		Design Values	737

	24.3	Provisions of UBC-97: Dynamic Method	738
	24.4	Scaling of Results	740
	24.5	Program 24-UBC 1997 Dynamic Lateral Force Method	750
	24.6	Summary	754
	24.7	Problems	755
25	INTE	ERNATIONAL BUILDING CODE IBC-2000	757
	25.1	Response Spectral Acceleration: S_s , S_l	757
	25.2	Soil Modification Response Spectral Acceleration: S_{MS} , S_{M1}	758
	25.3	Design Response Spectral Acceleration: S _{DS} , S _{D1}	759
	25.4	Site Class Definition: A, B,F	760
	25.5	Seismic Use Group (SUG) and Occupancy Importance Factor	$(I_E)760$
	25.6	Seismic Design Category (A, B, C, D, E and F)	761
	25.7	Design Response Spectral Curve: Sa v.s. T	763
	25.8	Determination of the Fundamental Period	766
	25.9	Minimum lateral Force Procedure	
		[IBC-2000: Section 1616.4.1]	767
	25.10	Simplified Analysis Procedure [IBC-2000: Section 1617.5]	768
		25.10.1 Seismic Base Shear	768
		25.10.2 Response Modification Factor R	768
		25.10.3 Vertical Distribution of Lateral Forces	769
	25.11	Equivalent Seismic Lateral Force Method:	
		[IBC-2000: Section 1617.4]	769
		25.11.1 Distribution of Lateral Forces	771
		25.11.2 Overturning Moments	771
		25.11.3 Horizontal Torsional Moment	772
		25.11.4 P-Delta Effect (P-△)	772
		25.11.5 Story Drift	773
	25.12	Redundancy/Reliability Factor	774
	25.13	Earthquake Load Effect	775
	25.14	Building Irregularities	775
	25.15	Summary	781
ΑP	PENDIC	CES	783
Ар	pendix	l: Answers to Problems in Selected Chapters	785
Аp	pendix	II: Computer Programs	793
Аp	pendix	III: Glossary	795
Sel	lected E	Bibliography	803
ind	lex		807